Asymptotic dimension of graphs

Louis Esperet (CNRS, Grenoble, France)

(joint work with M. Bonamy, N. Bousquet, C. Groenland, F. Pirot and A. Scott)
Workshop on Graph Theory \& Combinatorics in Thuringia July 31, 2020

A Notion of dimension for metric spaces

- \mathbb{R}^{d} and d-dimensional grids should have dimension d

A Notion of dimension for metric spaces

- \mathbb{R}^{d} and d-dimensional grids should have dimension d
- robust and invariant under local modifications

A Notion of dimension for metric spaces

- \mathbb{R}^{d} and d-dimensional grids should have dimension d
- robust and invariant under local modifications
- a continuous space and a sufficiently fine discretization should have the same dimension

A Notion of dimension for metric spaces

- \mathbb{R}^{d} and d-dimensional grids should have dimension d
- robust and invariant under local modifications
- a continuous space and a sufficiently fine discretization should have the same dimension
- a clean combinatorial definition!

A Notion of dimension for metric spaces

- \mathbb{R}^{d} and d-dimensional grids should have dimension d
- robust and invariant under local modifications
- a continuous space and a sufficiently fine discretization should have the same dimension
- a clean combinatorial definition!

A Notion of dimension for metric spaces

- \mathbb{R}^{d} and d-dimensional grids should have dimension d
- robust and invariant under local modifications
- a continuous space and a sufficiently fine discretization should have the same dimension
- a clean combinatorial definition!

A Notion of dimension for metric spaces

- \mathbb{R}^{d} and d-dimensional grids should have dimension d
- robust and invariant under local modifications
- a continuous space and a sufficiently fine discretization should have the same dimension
- a clean combinatorial definition!

A Notion of dimension for metric spaces

- \mathbb{R}^{d} and d-dimensional grids should have dimension d
- robust and invariant under local modifications
- a continuous space and a sufficiently fine discretization should have the same dimension
- a clean combinatorial definition!

A Notion of dimension for metric spaces

- \mathbb{R}^{d} and d-dimensional grids should have dimension d
- robust and invariant under local modifications
- a continuous space and a sufficiently fine discretization should have the same dimension
- a clean combinatorial definition!

A Notion of dimension for metric spaces

- \mathbb{R}^{d} and d-dimensional grids should have dimension d
- robust and invariant under local modifications
- a continuous space and a sufficiently fine discretization should have the same dimension
- a clean combinatorial definition!

Asymptotic dimension

Gromov (1993). A metric space X has asymptotic dimension at most d if there is a function f such that for every $r>0, X$ can be covered by sets of at most $d+1$ colors, each of diameter at most $f(r)$, and any two sets of the same color are at distance $>r$ apart.

Asymptotic dimension

Gromov (1993). A metric space X has asymptotic dimension at most d if there is a function f such that for every $r>0, X$ can be covered by sets of at most $d+1$ colors, each of diameter at most $f(r)$, and any two sets of the same color are at distance $>r$ apart.

Asymptotic dimension

Gromov (1993). A metric space X has asymptotic dimension at most d if there is a function f such that for every $r>0, X$ can be covered by sets of at most $d+1$ colors, each of diameter at most $f(r)$, and any two sets of the same color are at distance $>r$ apart.

- \mathbb{R}^{d} and d-dimensional grids should have dimension d
- robust and invariant under local modifications
- a continuous space and a sufficiently fine discretization should have the same dimension
- a clean combinatorial definition

Quasi-ISOMETRY

Two metric spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ are quasi-isometric if there is a map $f: X \rightarrow Y$ and constants $\epsilon \geq 0, \lambda \geq 1$, and $C \geq 0$ such that any element of Y is at distance at most C from some element of $f(X)$, and for every $x_{1}, x_{2} \in X$,

$$
\frac{1}{\lambda} d_{X}\left(x_{1}, x_{2}\right)-\epsilon \leq d_{Y}\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \leq \lambda d_{X}\left(x_{1}, x_{2}\right)+\epsilon
$$

QuASI-ISOMETRY

Two metric spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ are quasi-isometric if there is a map $f: X \rightarrow Y$ and constants $\epsilon \geq 0, \lambda \geq 1$, and $C \geq 0$ such that any element of Y is at distance at most C from some element of $f(X)$, and for every $x_{1}, x_{2} \in X$,

$$
\frac{1}{\lambda} d_{X}\left(x_{1}, x_{2}\right)-\epsilon \leq d_{Y}\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \leq \lambda d_{X}\left(x_{1}, x_{2}\right)+\epsilon .
$$

Example. $X=$ the 2-dimensional grid, $Y=\mathbb{R}^{2}, f$: the grid $\rightarrow \mathbb{Z}^{2}$.

$$
\begin{aligned}
\frac{1}{\sqrt{2}} d_{X}\left(x_{1}, x_{2}\right) \leq & d_{Y}\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \leq d_{X}\left(x_{1}, x_{2}\right) \\
& \begin{array}{l|l|l|l|l}
& & & & \\
\hline & & & & \\
\hline & & & & \\
\hline & & & & \\
\hline
\end{array}
\end{aligned}
$$

QuASI-ISOMETRY

Two metric spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ are quasi-isometric if there is a map $f: X \rightarrow Y$ and constants $\epsilon \geq 0, \lambda \geq 1$, and $C \geq 0$ such that any element of Y is at distance at most C from some element of $f(X)$, and for every $x_{1}, x_{2} \in X$,

$$
\frac{1}{\lambda} d_{X}\left(x_{1}, x_{2}\right)-\epsilon \leq d_{Y}\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \leq \lambda d_{X}\left(x_{1}, x_{2}\right)+\epsilon
$$

Observation

Quasi-isometric spaces have the same asymptotic dimension.

Geometric group theory

Given a finitely generated group G and a finite symmetric set of generators S, the Cayley graph of (G, S) has vertex set x and an edge between any element $x \in G$ and any element $x s \in G(s \in S)$.

Geometric group theory

Given a finitely generated group G and a finite symmetric set of generators S, the Cayley graph of (G, S) has vertex set x and an edge between any element $x \in G$ and any element $x s \in G(s \in S)$.

Geometric group theory

Given a finitely generated group G and a finite symmetric set of generators S, the Cayley graph of (G, S) has vertex set x and an edge between any element $x \in G$ and any element $x s \in G(s \in S)$.

Observation

All Cayley graphs of a finitely generated group G are quasi-isometric, and thus they have the same asymptotic dimension.

Geometric group theory

Given a finitely generated group G and a finite symmetric set of generators S, the Cayley graph of (G, S) has vertex set x and an edge between any element $x \in G$ and any element $x s \in G(s \in S)$.

Observation

All Cayley graphs of a finitely generated group G are quasi-isometric, and thus they have the same asymptotic dimension.

So the asymptotic dimension is a group invariant!

A convenient rephrasing

A graph G has asymptotic dimension at most d if there is a function f such that for every $r>0, G$ can be covered by sets of at most $d+1$ colors, each of diameter at most $f(r)$, and any two sets of the same color are at distance $>r$ apart.

A convenient rephrasing

A graph G has asymptotic dimension at most d if there is a function f such that for every $r>0, G$ can be partitioned into sets of at most $d+1$ colors, each of diameter at most $f(r)$, and any two sets of the same color are at distance $>r$ apart.

A convenient rephrasing

A graph G has asymptotic dimension at most d if there is a function f such that for every $r>0, G$ can be partitioned into sets of at most $d+1$ colors, each of diameter at most $f(r)$, and any two sets of the same color are at distance $>r$ apart.

A convenient rephrasing

A graph G has asymptotic dimension at most d if there is a function f such that for every $r>0, G$ can be partitioned into sets of at most $d+1$ colors, each of diameter at most $f(r)$, and any two sets of the same color are at distance $>r$ apart.

A monochromatic r-component is a maximal set of vertices of the same color, lying in the same component of G^{r} (the graph obtained from G by adding edges between vertices at distance at most r apart).

A convenient rephrasing

A graph G has asymptotic dimension at most d if there is a function f such that for every $r>0, G$ can be partitioned into sets of at most $d+1$ colors, each of diameter at most $f(r)$, and any two sets of the same color are at distance $>r$ apart.

A monochromatic r-component is a maximal set of vertices of the same color, lying in the same component of G^{r} (the graph obtained from G by adding edges between vertices at distance at most r apart).

Equivalent definition

A graph G has asymptotic dimension at most d if there is a function f such that for every $r>0, G$ has a $(d+1)$-coloring, in which each monochromatic r-component has diameter at most $f(r)$ in G.

Basic Results

Asymptotic dimension of graph classes

A class of graphs \mathcal{G} has asymptotic dimension at most d if there is a function f such that for every $r>0$, any graph $G \in \mathcal{G}$ has a $(d+1)$ coloring, in which each monochromatic r-component has diameter at most $f(r)$ in G.

Basic Results

Asymptotic dimension of graph classes

A class of graphs \mathcal{G} has asymptotic dimension at most d if there is a function f such that for every $r>0$, any graph $G \in \mathcal{G}$ has a $(d+1)$ coloring, in which each monochromatic r-component has diameter at most $f(r)$ in G.

- A class has asymptotic dimension 0 if and only if there is a constant D such that all components of all the graphs in the class have diameter at most D

Basic Results

Asymptotic dimension of graph classes

A class of graphs \mathcal{G} has asymptotic dimension at most d if there is a function f such that for every $r>0$, any graph $G \in \mathcal{G}$ has a $(d+1)$ coloring, in which each monochromatic r-component has diameter at most $f(r)$ in G.

- A class has asymptotic dimension 0 if and only if there is a constant D such that all components of all the graphs in the class have diameter at most D
- the class of all finite d-dimensional grids has asymptotic dimension d

Basic Results

Asymptotic dimension of graph classes

A class of graphs \mathcal{G} has asymptotic dimension at most d if there is a function f such that for every $r>0$, any graph $G \in \mathcal{G}$ has a $(d+1)$ coloring, in which each monochromatic r-component has diameter at most $f(r)$ in G.

- A class has asymptotic dimension 0 if and only if there is a constant D such that all components of all the graphs in the class have diameter at most D
- the class of all finite d-dimensional grids has asymptotic dimension d
- trees have asymptotic dimension 1

Basic Results

Asymptotic dimension of graph classes

A class of graphs \mathcal{G} has asymptotic dimension at most d if there is a function f such that for every $r>0$, any graph $G \in \mathcal{G}$ has a $(d+1)$ coloring, in which each monochromatic r-component has diameter at most $f(r)$ in G.

- A class has asymptotic dimension 0 if and only if there is a constant D such that all components of all the graphs in the class have diameter at most D
- the class of all finite d-dimensional grids has asymptotic dimension d
- trees have asymptotic dimension 1
- any family of bounded degree expanders has infinite asymptotic dimension (Hume 2017)

Trees

Trees

Planar graphs

Planar graphs

Planar graphs

Theorem (Fujiwara, Papasoglou 2020)
Planar graphs have asymptotic dimension at most 3.

Planar graphs

Theorem (Fujiwara, Papasoglou 2020)
Planar graphs have asymptotic dimension at most 3.

Theorem (Bonamy, Bousquet, E., Groenland, Pirot, Scott 2020)

$\forall k, K_{3, k}$-minor free graphs have asymptotic dimension at most 2.

LAYERINGS

LAYERINGS

LAYERINGS

LAYERINGS

Observation

If for any $r>0$, the class of graphs induced by $2 r$ consecutive layers has asymptotic dimension at most d, then the whole graph has asymptotic dimension at most $2 d+1$.

LAYERINGS

Theorem (Brodskiy, Dydak, Levin, Mitra 2008)

If for any $r>0$, the class of graphs induced by $2 r$ consecutive layers has asymptotic dimension at most d, then the whole graph has asymptotic dimension at most $d+1$.

TREEWIDTH AND LAYERED TREEWIDTH

Theorem (Bonamy, Bousquet, E., Groenland, Pirot, Scott 2020)
$\forall k, \Delta$, graphs of treewidth k and maximum degree Δ have asymptotic dimension at most 1.

TREEWIDTH AND LAYERED TREEWIDTH

Theorem (Bonamy, Bousquet, E., Groenland, Pirot, Scott 2020)
$\forall k, \Delta$, graphs of treewidth k and maximum degree Δ have asymptotic dimension at most 1.

Graphs of bounded layered treewidth have layerings in which any constant number of consecutive layers induce a graph of bounded treewidth.

Treewidth and Layered Treewidth

Theorem (Bonamy, Bousquet, E., Groenland, Pirot, Scott 2020)
$\forall k, \Delta$, graphs of treewidth k and maximum degree Δ have asymptotic dimension at most 1.

Graphs of bounded layered treewidth have layerings in which any constant number of consecutive layers induce a graph of bounded treewidth.

Theorem (Bonamy, Bousquet, E., Groenland, Pirot, Scott 2020)
$\forall k, \Delta$, graphs of layered treewidth k and maximum degree Δ have asymptotic dimension at most 2.

H-Minor free graphs of bounded degree

Theorem (Dujmović, E., Morin, Walczak, Wood 2020)
$\forall H, \Delta, H$-minor free graphs of maximum degree Δ have bounded layered treewidth.

H-MINOR FREE GRAPHS OF BOUNDED DEGREE

Theorem (Dujmović, E., Morin, Walczak, Wood 2020)
$\forall H, \Delta, H$-minor free graphs of maximum degree Δ have bounded layered treewidth.

Theorem (Bonamy, Bousquet, E., Groenland, Pirot, Scott 2020)
$\forall H, \Delta, H$-minor free graphs of maximum degree Δ have asymptotic dimension at most 2.

H-minor free graphs of bounded degree

Theorem (Dujmović, E., Morin, Walczak, Wood 2020)
$\forall H, \Delta, H$-minor free graphs of maximum degree Δ have bounded layered treewidth.

Theorem (Bonamy, Bousquet, E., Groenland, Pirot, Scott 2020)
$\forall H, \Delta, H$-minor free graphs of maximum degree Δ have asymptotic dimension at most 2.

Question (Ostrovskii Rosenthal 2015)

Is it true than any minor excluded group has asymptotic dimension at most 2?

H-minor FREE GRAPHS

Theorem (Liu 2020)
$\forall k$, graphs of treewidth k have asymptotic dimension ≤ 1.

H-minor FREE GRAPHS

Theorem (Liu 2020)
$\forall k$, graphs of treewidth k have asymptotic dimension ≤ 1.

Theorem (Liu 2020)
$\forall k$, graphs of layered treewidth k have asymptotic dimension ≤ 2.

H-MINOR FREE GRAPHS

Theorem (Liu 2020)

$\forall k$, graphs of treewidth k have asymptotic dimension ≤ 1.

Theorem (Liu 2020)
$\forall k$, graphs of layered treewidth k have asymptotic dimension ≤ 2.

Theorem (Liu 2020)
$\forall H, H$-minor free graphs have asymptotic dimension ≤ 2.

H-MINOR FREE GRAPHS

Theorem (Liu 2020)

$\forall k$, graphs of treewidth k have asymptotic dimension ≤ 1.

Theorem (Liu 2020)
$\forall k$, graphs of layered treewidth k have asymptotic dimension ≤ 2.

Theorem (Liu 2020)

$\forall H, H$-minor free graphs have asymptotic dimension ≤ 2.

The best known bound for K_{t}-minor free graphs was asymptotic dimension at most 4^{t} (Ostrovskii Rosenthal 2015).

Connections with clustered coloring

Observation
If a class has asymptotic dimension at most d, then any graph G in the class has a $(d+1)$-coloring such that any monochromatic component has bounded diameter in G.

Connections with clustered coloring

Observation

If a class has asymptotic dimension at most d, then any graph G in the class has a $(d+1)$-coloring such that any monochromatic component has bounded diameter in G.

Observation

If a class has maximum degree Δ and asymptotic dimension at most d, any graph G in the class has a $(d+1)$-coloring such that any monochromatic component has size at most poly (Δ).

Connections with clustered coloring

Observation

If a class has asymptotic dimension at most d, then any graph G in the class has a $(d+1)$-coloring such that any monochromatic component has bounded diameter in G.

Observation

If a class has maximum degree Δ and asymptotic dimension at most d, any graph G in the class has a $(d+1)$-coloring such that any monochromatic component has size at most poly(Δ).

Corollary

$\forall H, \Delta, H$-minor free graphs of maximum degree Δ have a 3 -coloring such that any monochromatic component has size at most poly (Δ).

Connections with clustered coloring

Observation

If a class has asymptotic dimension at most d, then any graph G in the class has a $(d+1)$-coloring such that any monochromatic component has bounded diameter in G.

Observation

If a class has maximum degree Δ and asymptotic dimension at most d, any graph G in the class has a $(d+1)$-coloring such that any monochromatic component has size at most poly(Δ).

Corollary

$\forall H, \Delta, H$-minor free graphs of maximum degree Δ have a 3 -coloring such that any monochromatic component has size at most poly (Δ).

This weaker statement was only proved in 2019 for planar graphs (Liu Wood), and in 2020 for H -minor free graphs (DEMWW).

Connections with network decompositions

Observation

If a class has asymptotic dimension at most d, then for any $r>0$, any graph in the class has a partition into sets of diameter $f(r)$ such that any r-ball intersects at most $d+1$ sets.

Connections with network decompositions

Observation

If a class has asymptotic dimension at most d, then for any $r>0$, any graph in the class has a partition into sets of diameter $f(r)$ such that any r-ball intersects at most $d+1$ sets.

Connections with network decompositions

Observation

If a class has asymptotic dimension at most d, then for any $r>0$, any graph in the class has a partition into sets of diameter $f(r)$ such that any r-ball intersects at most $d+1$ sets.

Connections with network decompositions

Observation

If a class has asymptotic dimension at most d, then for any $r>0$, any graph in the class has a partition into sets of diameter $f(r)$ such that any r-ball intersects at most $d+1$ sets.

Connections with network decompositions

Observation

If a class has asymptotic dimension at most d, then for any $r>0$, any graph in the class has a partition into sets of diameter $f(r)$ such that any r-ball intersects at most $d+1$ sets.

In many cases we can take $f(r)=O(r)$ (d-dimensional grids, trees, $K_{3, k}$-minor free graphs).

Connections with network decompositions

Observation

If a class has asymptotic dimension at most d, then for any $r>0$, any graph in the class has a partition into sets of diameter $f(r)$ such that any r-ball intersects at most $d+1$ sets.

In many cases we can take $f(r)=O(r)$ (d-dimensional grids, trees, $K_{3, k}$-minor free graphs).
If $f(r) \leq \sigma \cdot r$ and the partitions can be computed efficiently then the class admits a ($\sigma, d+1$)-weak sparse partition scheme.

Connections with network decompositions

Observation

If a class has asymptotic dimension at most d, then for any $r>0$, any graph in the class has a partition into sets of diameter $f(r)$ such that any r-ball intersects at most $d+1$ sets.

In many cases we can take $f(r)=O(r)$ (d-dimensional grids, trees, $K_{3, k}$-minor free graphs).
If $f(r) \leq \sigma \cdot r$ and the partitions can be computed efficiently then the class admits a $(\sigma, d+1)$-weak sparse partition scheme.
If $\sigma \cdot d$ is small, then several combinatorial optimisation problems can be approximated efficiently.

Open problem

Hume (2017) proved that classes of bounded degree expanders have infinite asymptotic dimension. In fact he proved that if a class of bounded degree has bounded asymptotic dimension, then all the n-vertex subgraphs of graphs in the class have $O(n)$-separators.

Open problem

Hume (2017) proved that classes of bounded degree expanders have infinite asymptotic dimension. In fact he proved that if a class of bounded degree has bounded asymptotic dimension, then all the n-vertex subgraphs of graphs in the class have $o(n)$-separators.

Question

Is it true that if all the n-vertex subgraphs of graphs in the class have $O\left(n^{1-\epsilon}\right)$-separators, then the class has bounded asymptotic dimension?

Open problem

Hume (2017) proved that classes of bounded degree expanders have infinite asymptotic dimension. In fact he proved that if a class of bounded degree has bounded asymptotic dimension, then all the n-vertex subgraphs of graphs in the class have $O(n)$-separators.

Question

Is it true that if all the n-vertex subgraphs of graphs in the class have $O\left(n^{1-\epsilon}\right)$-separators, then the class has bounded asymptotic dimension?

We can prove that the answer is positive for classes of polynomial growth (i.e. such that the size of r-balls grows as $O\left(r^{d}\right)$, for some d).

