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Two metric spaces (X, dx) and (Y, dy) are quasi-isometric if there is a
map f : X — Y and constants € > 0, A > 1, and C > 0 such that any

element of Y is at distance at most C from some element of f(X), and for
every xi,xp € X,

1
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map f : X — Y and constants € > 0, A > 1, and C > 0 such that any

element of Y is at distance at most C from some element of f(X), and for
every xi,xp € X,

1
XdX(X17X2) —e< dy(f(Xl), f(X2)) < Adx(Xl,Xz) + €.

Example. X = the 2-dimensional grid, Y = R?, f : the grid — Z2.

dx(Xl,Xg) S dy(f(Xl), f(XQ)) S dx(Xl,Xg).
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QUASI-ISOMETRY

Two metric spaces (X, dx) and (Y, dy) are quasi-isometric if there is a
map f : X — Y and constants ¢ > 0, A > 1, and C > 0 such that any

element of Y is at distance at most C from some element of f(X), and for
every xi,xp € X,

1
XdX(X17X2) —e< dy(f(Xl), f(X2)) < Adx(Xl,Xz) + €.

Observation
Quasi-isometric spaces have the same asymptotic dimension. ]
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Given a finitely generated group G and a finite symmetric set of generators
S, the Cayley graph of (G, S) has vertex set x and an edge between any
element x € G and any element xs € G (s € 5).

Observation

All Cayley graphs of a finitely generated group G are quasi-isometric,
and thus they have the same asymptotic dimension.

So the asymptotic dimension is a group invariant !
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A monochromatic r-component is a maximal set of vertices of the same
color, lying in the same component of G” (the graph obtained from G by
adding edges between vertices at distance at most r apart).

Equivalent definition)

A graph G has asymptotic dimension at most d if there is a function
f such that for every r > 0, G has a (d + 1)-coloring, in which each
monochromatic r-component has diameter at most f(r) in G.
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BASIC RESULTS

Asymptotic dimension of graph classesJ

A class of graphs G has asymptotic dimension at most d if there is a
function f such that for every r > 0, any graph G € G has a (d + 1)-
coloring, in which each monochromatic r-component has diameter at
most f(r) in G.

@ A class has asymptotic dimension 0 if and only if there is a constant
D such that all components of all the graphs in the class have
diameter at most D

@ the class of all finite d-dimensional grids has asymptotic dimension d
@ trees have asymptotic dimension 1

@ any family of bounded degree expanders has infinite asymptotic
dimension (Hume 2017)
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Vk, K3 ,-minor free graphs have asymptotic dimension at most 2.

.

’_[Theorem (Bonamy, Bousquet, E., Groenland, Pirot, Scott 2020)|
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Observation

If for any r > 0, the class of graphs induced by 2r consecutive layers has
asymptotic dimension at most d, then the whole graph has asymptotic
dimension at most 2d + 1.




LAYERINGS

Theorem (Brodskiy, Dydak, Levin, Mitra 2008)]

If for any r > 0, the class of graphs induced by 2r consecutive layers has
asymptotic dimension at most d, then the whole graph has asymptotic
dimension at most d + 1.
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Theorem (Bonamy, Bousquet, E., Groenland, Pirot, Scott 2020)

Vk, A, graphs of layered treewidth k and maximum degree A have
asymptotic dimension at most 2.
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’_[Theorem (Dujmovi¢, E., Morin, Walczak, Wood 2020)|

VH, A, H-minor free graphs of maximum degree A have bounded layered
treewidth.

. J

’_[Theorem (Bonamy, Bousquet, E., Groenland, Pirot, Scott 2020)|

VH, A, H-minor free graphs of maximum degree A have asymptotic
dimension at most 2.

\.

’_[Question (Ostrovskii Rosenthal 2015)]

Is it true than any minor excluded group has asymptotic dimension at
most 27

~
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H-MINOR FREE GRAPHS

Theorem (Liu 2020)]
Vk, graphs of treewidth k have asymptotic dimension < 1. ]

’_(Theorem (Liu 2020)]
Vk, graphs of layered treewidth k have asymptotic dimension < 2.

. J

’_[Theorem (Liu 2020)]

VH, H-minor free graphs have asymptotic dimension < 2.

. J

The best known bound for Ki-minor free graphs was asymptotic dimension
at most 4' (Ostrovskii Rosenthal 2015).
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,_l Observation !

If a class has asymptotic dimension at most d, then any graph G in the
class has a (d + 1)-coloring such that any monochromatic component
has bounded diameter in G.

.

,_l Observation !

If a class has maximum degree A and asymptotic dimension at most d,
any graph G in the class has a (d +1)-coloring such that any monochro-
matic component has size at most poly(A).

.

| Corollary !

VH, A, H-minor free graphs of maximum degree A have a 3-coloring
such that any monochromatic component has size at most poly(A).

.

This weaker statement was only proved in 2019 for planar graphs (Liu
Wood), and in 2020 for H-minor free graphs (DEMWW).
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CONNECTIONS WITH NETWORK DECOMPOSITIONS

Observation

If a class has asymptotic dimension at most d, then for any r > 0, any
graph in the class has a partition into sets of diameter f(r) such that
any r-ball intersects at most d + 1 sets.

In many cases we can take 7(r) = O(r) (d-dimensional grids, trees,
K3 k-minor free graphs).

If f(r) < o-r and the partitions can be computed efficiently then the class
admits a (o, d + 1)-weak sparse partition scheme.

If o - d is small, then several combinatorial optimisation problems can be
approximated efficiently.
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Hume (2017) proved that classes of bounded degree expanders have
infinite asymptotic dimension. In fact he proved that if a class of bounded
degree has bounded asymptotic dimension, then all the n-vertex subgraphs
of graphs in the class have o(n)-separators.

Question

Is it true that if all the n-vertex subgraphs of graphs in the class have
O(n'~¢)-separators, then the class has bounded asymptotic dimension?

We can prove that the answer is positive for classes of polynomial growth
(i.e. such that the size of r-balls grows as O(r?), for some d).
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