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A notion of dimension for metric spaces

Rd and d-dimensional grids should have dimension d

robust and invariant under local modifications

a continuous space and a sufficiently fine discretization should have
the same dimension

a clean combinatorial definition !
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Asymptotic dimension

Gromov (1993). A metric space X has asymptotic dimension at most d if
there is a function f such that for every r > 0, X can be covered by sets
of at most d + 1 colors, each of diameter at most f (r), and any two sets
of the same color are at distance > r apart.
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Quasi-isometry

Two metric spaces (X , dX ) and (Y , dY ) are quasi-isometric if there is a
map f : X → Y and constants ε ≥ 0, λ ≥ 1, and C ≥ 0 such that any
element of Y is at distance at most C from some element of f (X ), and for
every x1, x2 ∈ X ,

1

λ
dX (x1, x2)− ε ≤ dY (f (x1), f (x2)) ≤ λdX (x1, x2) + ε.
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Two metric spaces (X , dX ) and (Y , dY ) are quasi-isometric if there is a
map f : X → Y and constants ε ≥ 0, λ ≥ 1, and C ≥ 0 such that any
element of Y is at distance at most C from some element of f (X ), and for
every x1, x2 ∈ X ,

1

λ
dX (x1, x2)− ε ≤ dY (f (x1), f (x2)) ≤ λdX (x1, x2) + ε.

Quasi-isometric spaces have the same asymptotic dimension.

Observation



Geometric group theory

Given a finitely generated group G and a finite symmetric set of generators
S , the Cayley graph of (G ,S) has vertex set x and an edge between any
element x ∈ G and any element xs ∈ G (s ∈ S).

+(0, 1)

−(0, 1)

+(1, 0)−(1, 0)

All Cayley graphs of a finitely generated group G are quasi-isometric,
and thus they have the same asymptotic dimension.

Observation

So the asymptotic dimension is a group invariant !
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A convenient rephrasing

A graph G has asymptotic dimension at most d if there is a function f
such that for every r > 0, G can be covered by sets of at most d + 1
colors, each of diameter at most f (r), and any two sets of the same color
are at distance > r apart.



A convenient rephrasing

A graph G has asymptotic dimension at most d if there is a function f
such that for every r > 0, G can be partitioned into sets of at most d + 1
colors, each of diameter at most f (r), and any two sets of the same color
are at distance > r apart.



A convenient rephrasing

A graph G has asymptotic dimension at most d if there is a function f
such that for every r > 0, G can be partitioned into sets of at most d + 1
colors, each of diameter at most f (r), and any two sets of the same color
are at distance > r apart.

≤ r ≤ r ≤ r ≤ r



A convenient rephrasing

A graph G has asymptotic dimension at most d if there is a function f
such that for every r > 0, G can be partitioned into sets of at most d + 1
colors, each of diameter at most f (r), and any two sets of the same color
are at distance > r apart.

≤ r ≤ r ≤ r ≤ r

A monochromatic r -component is a maximal set of vertices of the same
color, lying in the same component of G r (the graph obtained from G by
adding edges between vertices at distance at most r apart).



A convenient rephrasing

A graph G has asymptotic dimension at most d if there is a function f
such that for every r > 0, G can be partitioned into sets of at most d + 1
colors, each of diameter at most f (r), and any two sets of the same color
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≤ r ≤ r ≤ r ≤ r

A monochromatic r -component is a maximal set of vertices of the same
color, lying in the same component of G r (the graph obtained from G by
adding edges between vertices at distance at most r apart).

A graph G has asymptotic dimension at most d if there is a function
f such that for every r > 0, G has a (d + 1)-coloring, in which each
monochromatic r -component has diameter at most f (r) in G .

Equivalent definition



Basic results

A class of graphs G has asymptotic dimension at most d if there is a
function f such that for every r > 0, any graph G ∈ G has a (d + 1)-
coloring, in which each monochromatic r -component has diameter at
most f (r) in G .

Asymptotic dimension of graph classes

A class has asymptotic dimension 0 if and only if there is a constant
D such that all components of all the graphs in the class have
diameter at most D

the class of all finite d-dimensional grids has asymptotic dimension d

trees have asymptotic dimension 1

any family of bounded degree expanders has infinite asymptotic
dimension (Hume 2017)
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Layerings
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If for any r > 0, the class of graphs induced by 2r consecutive layers has
asymptotic dimension at most d , then the whole graph has asymptotic
dimension at most 2d + 1.

Observation



Layerings

2r

If for any r > 0, the class of graphs induced by 2r consecutive layers has
asymptotic dimension at most d , then the whole graph has asymptotic
dimension at most d + 1.

Theorem (Brodskiy, Dydak, Levin, Mitra 2008)
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∀k ,∆, graphs of treewidth k and maximum degree ∆ have asymptotic
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Connections with clustered coloring

If a class has asymptotic dimension at most d , then any graph G in the
class has a (d + 1)-coloring such that any monochromatic component
has bounded diameter in G .

Observation

If a class has maximum degree ∆ and asymptotic dimension at most d ,
any graph G in the class has a (d +1)-coloring such that any monochro-
matic component has size at most poly(∆).

Observation

∀H,∆, H-minor free graphs of maximum degree ∆ have a 3-coloring
such that any monochromatic component has size at most poly(∆).

Corollary

This weaker statement was only proved in 2019 for planar graphs (Liu
Wood), and in 2020 for H-minor free graphs (DEMWW).
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Connections with network decompositions

If a class has asymptotic dimension at most d , then for any r > 0, any
graph in the class has a partition into sets of diameter f (r) such that
any r -ball intersects at most d + 1 sets.

Observation

In many cases we can take f (r) = O(r) (d-dimensional grids, trees,
K3,k -minor free graphs).

If f (r) ≤ σ · r and the partitions can be computed efficiently then the class
admits a (σ, d + 1)-weak sparse partition scheme.

If σ · d is small, then several combinatorial optimisation problems can be
approximated efficiently.



Open problem

Hume (2017) proved that classes of bounded degree expanders have
infinite asymptotic dimension. In fact he proved that if a class of bounded
degree has bounded asymptotic dimension, then all the n-vertex subgraphs
of graphs in the class have o(n)-separators.

Is it true that if all the n-vertex subgraphs of graphs in the class have
O(n1−ε)-separators, then the class has bounded asymptotic dimension?

Question

We can prove that the answer is positive for classes of polynomial growth
(i.e. such that the size of r -balls grows as O(rd), for some d).
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