Decompositions of Hypergraphs

Felix Joos

July 2020

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Old results

Theorem (Walecki, 1892)

 K_{2n+1} has a decomposition into edge-disjoint Hamilton cycles.

Old results

Theorem (Walecki, 1892)

 K_{2n+1} has a decomposition into edge-disjoint Hamilton cycles.

Theorem (Dirac, 1952)

Every graph G on $n \ge 3$ vertices with $\delta(G) \ge \frac{n}{2}$ contains a Hamilton cycle.

Old results

Theorem (Walecki, 1892)

 K_{2n+1} has a decomposition into edge-disjoint Hamilton cycles.

Theorem (Dirac, 1952) Every graph G on $n \ge 3$ vertices with $\delta(G) \ge \frac{n}{2}$ contains a Hamilton cycle.

Theorem (Hajnal, Szemerédi, 1970) $k|n \text{ and } \delta(G) \ge \frac{k-1}{k}n$, then G contains a K_k -factor. Theorem (Csaba, Kühn, Lo, Osthus, Treglown, 2016) *G r*-regular with $r \ge \frac{n}{2}$ and even, *n* large, then *G* has a Hamilton decomposition. Theorem (Csaba, Kühn, Lo, Osthus, Treglown, 2016) *G r*-regular with $r \ge \frac{n}{2}$ and even, *n* large, then *G* has a Hamilton decomposition.

Theorem (Böttcher, Schacht, Taraz, 2009) $\chi(H) = k$, H has bandwidth o(n) and $\Delta(H) = O(1)$ $\delta(G) \ge (\frac{k-1}{k} + o(1))n$, then $H \subset G$.

Conjecture (Nash-Williams, 1970)

 $\delta(G) \geq \frac{3n}{4}$ and G is triangle-divisible, then G has a triangle decomposition

Conjecture (Nash-Williams, 1970)

 $\delta(G) \geq \frac{3n}{4}$ and G is triangle-divisible, then G has a triangle decomposition

Problem

Given a graph H, determine δ_H where δ_H is the least δ such that for every $\varepsilon > 0$ and G on n (large) vertices with $\delta(G) \ge (\delta + \varepsilon)n$ has a H-decomposition subject to divisibility conditions?

A step forward

Fractional *H*-decomposition of *G*: ω : {copies of *H* in *G*} \rightarrow [0,1] such that $\sum_{H \ni e} \omega(H) = 1$ for $e \in E(G)$.

A step forward

Fractional *H*-decomposition of *G*:

 ω : {copies of H in G} \rightarrow [0,1] such that $\sum_{H \ni e} \omega(H) = 1$ for $e \in E(G)$.

 δ_{H}^{*} fractional version of δ_{H} .

A step forward

Fractional *H*-decomposition of *G*:

 ω : {copies of H in G} \rightarrow [0,1] such that $\sum_{H \ni e} \omega(H) = 1$ for $e \in E(G)$.

 δ_H^* fractional version of δ_H .

Theorem (Barber, Kühn, Lo, Osthus, 2016; Glock, Kühn, Lo, Montgomery, Osthus, 2019) $\delta_H \in \{\delta_H^*, 1 - \frac{1}{\chi}, 1 - \frac{1}{\chi+1}\}$ for $\chi = \chi(H) \ge 5$ solved for bipartite H General tool: turning fractional decompositions into decompositions

Cycles

Theorem (Barber, Kühn, Lo, Osthus, 2016) $\delta_{C_4} = \frac{2}{3} \text{ and } \delta_{C_{2\ell}} = \frac{1}{2} \text{ for } \ell \geq 3$ $\delta_{C_{2\ell+1}} = \delta^*_{C_{2\ell+1}}$

Cycles

Theorem (Barber, Kühn, Lo, Osthus, 2016) $\delta_{C_4} = \frac{2}{3} \text{ and } \delta_{C_{2\ell}} = \frac{1}{2} \text{ for } \ell \geq 3$ $\delta_{C_{2\ell+1}} = \delta^*_{C_{2\ell+1}}$

Theorem (J., M. Kühn, 2020⁺) $\delta_{C_{2\ell+1}} \rightarrow \frac{1}{2} \ (\ell \rightarrow \infty)$

$$G$$
 k-uniform (k-graph): edges of size k
 $d_m(S) =$ number of edges containing S for $|S| = m$
 $\delta_m(G) = \min_S d_m(S)$
 $\delta(G) = \delta_{k-1}(G)$

$$G$$
 k-uniform (k-graph): edges of size k
 $d_m(S) =$ number of edges containing S for $|S| = m$
 $\delta_m(G) = \min_S d_m(S)$
 $\delta(G) = \delta_{k-1}(G)$

tight cycle = cyclic vertex ordering, all k consecutive vertices form an edge

G k-uniform (k-graph): edges of size k $d_m(S) =$ number of edges containing S for |S| = m $\delta_m(G) = \min_S d_m(S)$ $\delta(G) = \delta_{k-1}(G)$

tight cycle = cyclic vertex ordering, all k consecutive vertices form an edge

Theorem (Rödl, Ruciński, Szemerédi, 2008) $\delta(G) \ge (\frac{1}{2} + o(1))n$, then G contains a (tight) Hamilton cycle

G k-uniform (k-graph): edges of size k $d_m(S) =$ number of edges containing S for |S| = m $\delta_m(G) = \min_S d_m(S)$ $\delta(G) = \delta_{k-1}(G)$

tight cycle = cyclic vertex ordering, all k consecutive vertices form an edge

Theorem (Rödl, Ruciński, Szemerédi, 2008) $\delta(G) \ge (\frac{1}{2} + o(1))n$, then G contains a (tight) Hamilton cycle

Theorem (Lang, Sahueza-Matamala; Polcyn, Reiher, Rödl, Schülke, 2020⁺) $\delta_{k-2}(G) \ge (\frac{5}{9} + o(1))n^2/2$, then G contains a (tight) Hamilton cycle

New results

New results

Theorem (J., Kühn, 2020⁺)
$$\delta^*_{C_{\ell}^{(k)}} \rightarrow \frac{1}{2} \text{ for } \ell \rightarrow \infty$$

New results

Theorem (J., Kühn, 2020⁺)
$$\delta^*_{C_{\ell}^{(k)}} \rightarrow \frac{1}{2}$$
 for $\ell \rightarrow \infty$

Proof method: Restriction systems + random walks

Proof Sketch

Theorem (Rödl, Ruciński, Szemerédi, 2008) $\forall \epsilon > 0, k \in \mathbb{N}$ the following holds for all large n: G k-graph with $\delta(G) \ge (\frac{1}{2} + \varepsilon)n$, then G contains a (tight) Hamilton cycle

Theorem (Rödl, Ruciński, Szemerédi, 2008) $\forall \epsilon > 0, k \in \mathbb{N}$ the following holds for all large n: G k-graph with $\delta(G) \ge (\frac{1}{2} + \varepsilon)n$, then G contains a (tight) Hamilton cycle

Theorem (J., Kühn, Schülke, 2020⁺)

 $\forall \epsilon > 0, k \in \mathbb{N} \exists \epsilon' > 0$ such that for all large n:

Theorem (Rödl, Ruciński, Szemerédi, 2008) $\forall \epsilon > 0, k \in \mathbb{N}$ the following holds for all large n: G k-graph with $\delta(G) \ge (\frac{1}{2} + \varepsilon)n$, then G contains a (tight) Hamilton cycle

Theorem (J., Kühn, Schülke, 2020⁺)

 $\forall \epsilon > 0, k \in \mathbb{N} \exists \epsilon' > 0$ such that for all large n:

• G k-graph with $\delta(G) \ge (\frac{1}{2} + \epsilon)n$

Theorem (Rödl, Ruciński, Szemerédi, 2008) $\forall \epsilon > 0, k \in \mathbb{N}$ the following holds for all large n: G k-graph with $\delta(G) \ge (\frac{1}{2} + \varepsilon)n$, then G contains a (tight) Hamilton cycle

Theorem (J., Kühn, Schülke, 2020⁺)

 $\forall \epsilon > 0, k \in \mathbb{N} \exists \epsilon' > 0$ such that for all large n:

• G k-graph with $\delta(G) \ge (\frac{1}{2} + \epsilon)n$

•
$$|d_1(v) - d_1(u)| \leq \epsilon' n^{k-1}$$

Theorem (Rödl, Ruciński, Szemerédi, 2008) $\forall \epsilon > 0, k \in \mathbb{N}$ the following holds for all large n: G k-graph with $\delta(G) \ge (\frac{1}{2} + \varepsilon)n$, then G contains a (tight) Hamilton cycle

Theorem (J., Kühn, Schülke, 2020⁺)

 $\forall \epsilon > 0, k \in \mathbb{N} \exists \epsilon' > 0$ such that for all large n:

• G k-graph with $\delta(G) \ge (\frac{1}{2} + \epsilon)n$

•
$$|d_1(v) - d_1(u)| \leq \epsilon' n^{k-1}$$

then G contains $(e(G) - \epsilon n^k)/n$ edge-disjoint Hamilton cycles.

Theorem (J., Kühn, Schülke, 2020⁺)

 $\forall \epsilon > 0, k \in \mathbb{N} \exists \epsilon' > 0$ such that for all large n:

- G k-graph with $\delta(G) \ge (\frac{1}{2} + \epsilon)n$
- $|d_1(v) d_1(u)| \leq \epsilon' n^{k-1}$

then G contains $(e(G) - \epsilon n^k)/n$ edge-disjoint Hamilton cycles.

Theorem (J., Kühn, Schülke, 2020⁺)

 $\forall \epsilon > 0, k \in \mathbb{N} \exists \epsilon' > 0$ such that for all large n:

• G k-graph with $\delta(G) \ge (\frac{1}{2} + \epsilon)n$

•
$$|d_1(v) - d_1(u)| \leq \epsilon' n^{k-1}$$

then G contains $(e(G) - \epsilon n^k)/n$ edge-disjoint Hamilton cycles.

Corollary

Vertex-regular k-graphs G with $\delta(G) \ge (\frac{1}{2} + o(1))n$ can be approximately decomposed into Hamilton cycles with an arbitrary good precision.

Theorem (J., Kühn, Schülke, 2020⁺)

 $\forall \epsilon > 0, k \in \mathbb{N} \exists \epsilon' > 0$ such that for all large n:

- G k-graph with $\delta(G) \ge (\frac{1}{2} + \epsilon)n$
- $|d_1(v) d_1(u)| \leq \epsilon' n^{k-1}$

then G contains $(e(G) - \epsilon n^k)/n$ edge-disjoint Hamilton cycles.

Corollary

Vertex-regular k-graphs G with $\delta(G) \ge (\frac{1}{2} + o(1))n$ can be approximately decomposed into Hamilton cycles with an arbitrary good precision.

Proof method: $\delta^*_{C_{\ell}} \leq \frac{1}{2} + \epsilon$ for large enough ℓ ; random process; absorption

• Fractional ℓ -cycle decompositions

- Fractional *l*-cycle decompositions
- approx. decompositions into Hamilton cycles

- Fractional ℓ -cycle decompositions
- approx. decompositions into Hamilton cycles
- in hypergraphs under very weak assumptions

Graph decompositions

Three conjectures:

- ▶ Ringel: K_{2n+1} into any tree with *n* edges
- ▶ Tree packing conj.: K_n into trees T_1, \ldots, T_{n-1} with $e(T_i) = i$
- Oberwolfach problem: K_{2n+1} into any spanning union of cycles

Graph decompositions - progress

Approximate decompositions:

• $\Delta = O(1)$, trees, almost spanning, K_n Böttcher, Hladký, Piguet, Taraz, 16
- $\Delta = O(1)$, trees, almost spanning, K_n Böttcher, Hladký, Piguet, Taraz, 16
- $\Delta = O(1)$, separable, almost spanning, K_n Messuti, Rödl, Schacht, 17

- $\Delta = O(1)$, trees, almost spanning, K_n Böttcher, Hladký, Piguet, Taraz, 16
- $\Delta = O(1)$, separable, almost spanning, K_n Messuti, Rödl, Schacht, 17
- $\Delta = O(1)$, separable, spanning, K_n Ferber, Lee, Mousset, 16

- $\Delta = O(1)$, trees, almost spanning, K_n Böttcher, Hladký, Piguet, Taraz, 16
- $\Delta = O(1)$, separable, almost spanning, K_n Messuti, Rödl, Schacht, 17
- $\Delta = O(1)$, separable, spanning, K_n Ferber, Lee, Mousset, 16
- $\Delta = O(1)$, spanning, multipart., quasiran. Kim, Kühn, Osthus, Tyomkyn, 19

- $\Delta = O(1)$, trees, almost spanning, K_n Böttcher, Hladký, Piguet, Taraz, 16
- $\Delta = O(1)$, separable, almost spanning, K_n Messuti, Rödl, Schacht, 17
- $\Delta = O(1)$, separable, spanning, K_n Ferber, Lee, Mousset, 16
- $\Delta = O(1)$, spanning, multipart., quasiran. Kim, Kühn, Osthus, Tyomkyn, 19
- $\Delta \leq \mathsf{poly}\,\mathsf{pn}$, trees, spanning, $\mathit{G}_{\mathsf{n},\mathsf{p}}$ Ferber, Samotij, 18⁺

- $\Delta = O(1)$, trees, almost spanning, K_n Böttcher, Hladký, Piguet, Taraz, 16
- $\Delta = O(1)$, separable, almost spanning, K_n Messuti, Rödl, Schacht, 17
- $\Delta = O(1)$, separable, spanning, K_n Ferber, Lee, Mousset, 16
- $\Delta = O(1)$, spanning, multipart., quasiran. Kim, Kühn, Osthus, Tyomkyn, 19
- $\Delta \leq$ poly *pn*, trees, spanning, $G_{n,p}$ Ferber, Samotij, 18⁺
- $\Delta \leq n/\log n$, bo. dege., spanning, quasiran. Allen, Böttcher, Hladký, Piguet, 19

Approximate decompositions:

- $\Delta = O(1)$, trees, almost spanning, K_n Böttcher, Hladký, Piguet, Taraz, 16
- $\Delta = O(1)$, separable, almost spanning, K_n Messuti, Rödl, Schacht, 17
- $\Delta = O(1)$, separable, spanning, K_n Ferber, Lee, Mousset, 16
- $\Delta = O(1)$, spanning, multipart., quasiran. Kim, Kühn, Osthus, Tyomkyn, 19
- $\Delta \leq \mathsf{poly}\,\mathsf{pn},\,\mathsf{trees},\,\mathsf{spanning},\,\,\mathit{G}_{\mathsf{n},\mathsf{p}}\,$ Ferber, Samotij, 18 $^+$
- $\Delta \leq n/\log n$, bo. dege., spanning, quasiran. Allen, Böttcher, Hladký, Piguet, 19

Decompositions:

• $\Delta = O(1)$, trees, (almost) spanning, quasiran. J., Kim, Kühn, Osthus, 19

Approximate decompositions:

- $\Delta = O(1)$, trees, almost spanning, K_n Böttcher, Hladký, Piguet, Taraz, 16
- $\Delta = O(1)$, separable, almost spanning, K_n Messuti, Rödl, Schacht, 17
- $\Delta = O(1)$, separable, spanning, K_n Ferber, Lee, Mousset, 16
- $\Delta = O(1)$, spanning, multipart., quasiran. Kim, Kühn, Osthus, Tyomkyn, 19
- $\Delta \leq$ poly *pn*, trees, spanning, $G_{n,p}$ Ferber, Samotij, 18⁺
- $\Delta \leq n/\log n$, bo. dege., spanning, quasiran. Allen, Böttcher, Hladký, Piguet, 19

- $\Delta = \mathit{O}(1)$, trees, (almost) spanning, quasiran. J., Kim, Kühn, Osthus, 19
- Oberwolfach problem Glock, J., Kim, Kühn, Osthus, 18⁺

Approximate decompositions:

- $\Delta = O(1)$, trees, almost spanning, K_n Böttcher, Hladký, Piguet, Taraz, 16
- $\Delta = O(1)$, separable, almost spanning, K_n Messuti, Rödl, Schacht, 17
- $\Delta = O(1)$, separable, spanning, K_n Ferber, Lee, Mousset, 16
- $\Delta = O(1)$, spanning, multipart., quasiran. Kim, Kühn, Osthus, Tyomkyn, 19
- $\Delta \leq$ poly pn, trees, spanning, $G_{n,p}$ Ferber, Samotij, 18⁺
- $\Delta \leq n/\log n$, bo. dege., spanning, quasiran. Allen, Böttcher, Hladký, Piguet, 19

- $\Delta = O(1)$, trees, (almost) spanning, quasiran. J., Kim, Kühn, Osthus, 19
- Oberwolfach problem Glock, J., Kim, Kühn, Osthus, 18⁺
- \bullet as ABHP + many leaves Allen, Böttcher, Clemens, Taraz, 19⁺

Approximate decompositions:

- $\Delta = O(1)$, trees, almost spanning, K_n Böttcher, Hladký, Piguet, Taraz, 16
- $\Delta = O(1)$, separable, almost spanning, K_n Messuti, Rödl, Schacht, 17
- $\Delta = O(1)$, separable, spanning, K_n Ferber, Lee, Mousset, 16
- $\Delta = O(1)$, spanning, multipart., quasiran. Kim, Kühn, Osthus, Tyomkyn, 19
- $\Delta \leq$ poly *pn*, trees, spanning, $G_{n,p}$ Ferber, Samotij, 18⁺
- $\Delta \leq n/\log n$, bo. dege., spanning, quasiran. Allen, Böttcher, Hladký, Piguet, 19

- $\Delta = O(1)$, trees, (almost) spanning, quasiran. J., Kim, Kühn, Osthus, 19
- Oberwolfach problem Glock, J., Kim, Kühn, Osthus, 18⁺
- ullet as ABHP + many leaves Allen, Böttcher, Clemens, Taraz, 19^+
- Ringel's conjecture Pokrovskiy, Montgomery, Sudakov, 20+

Approximate decompositions:

- $\Delta = O(1)$, trees, almost spanning, K_n Böttcher, Hladký, Piguet, Taraz, 16
- $\Delta = O(1)$, separable, almost spanning, K_n Messuti, Rödl, Schacht, 17
- $\Delta = O(1)$, separable, spanning, K_n Ferber, Lee, Mousset, 16
- $\Delta = O(1)$, spanning, multipart., quasiran. Kim, Kühn, Osthus, Tyomkyn, 19
- $\Delta \leq$ poly *pn*, trees, spanning, $G_{n,p}$ Ferber, Samotij, 18⁺
- $\Delta \leq n/\log n$, bo. dege., spanning, quasiran. Allen, Böttcher, Hladký, Piguet, 19

- $\Delta = O(1)$, trees, (almost) spanning, quasiran. J., Kim, Kühn, Osthus, 19
- Oberwolfach problem Glock, J., Kim, Kühn, Osthus, 18⁺
- \bullet as ABHP + many leaves Allen, Böttcher, Clemens, Taraz, 19⁺
- Ringel's conjecture Pokrovskiy, Montgomery, Sudakov, 20⁺
- 2-factors, quasiran. Keevash, Staden, 20⁺

Approximate decompositions:

- $\Delta = O(1)$, trees, almost spanning, K_n Böttcher, Hladký, Piguet, Taraz, 16
- $\Delta = O(1)$, separable, almost spanning, K_n Messuti, Rödl, Schacht, 17
- $\Delta = O(1)$, separable, spanning, K_n Ferber, Lee, Mousset, 16
- $\Delta = O(1)$, spanning, multipart., quasiran. Kim, Kühn, Osthus, Tyomkyn, 19
- $\Delta \leq$ poly *pn*, trees, spanning, $G_{n,p}$ Ferber, Samotij, 18⁺
- $\Delta \leq n/\log n$, bo. dege., spanning, quasiran. Allen, Böttcher, Hladký, Piguet, 19

- $\Delta = O(1)$, trees, (almost) spanning, quasiran. J., Kim, Kühn, Osthus, 19
- Oberwolfach problem Glock, J., Kim, Kühn, Osthus, 18⁺
- \bullet as ABHP + many leaves Allen, Böttcher, Clemens, Taraz, 19⁺
- Ringel's conjecture Pokrovskiy, Montgomery, Sudakov, 20+
- 2-factors, quasiran. Keevash, Staden, 20⁺
- Ringel's conjecture, quasiran. Keevash, Staden, 20⁺

Existence conjecture: Keevash, 14⁺

Existence conjecture: Keevash, 14⁺

Alternative proof + extensions: Glock, Kühn, Lo, Osthus, 17 $^+$

Existence conjecture: Keevash, 14⁺

```
Alternative proof + extensions: Glock, Kühn, Lo, Osthus, 17<sup>+</sup>
```

Multipartite setting: Keevash, 18⁺

Existence conjecture: Keevash, 14⁺

Alternative proof + extensions: Glock, Kühn, Lo, Osthus, 17⁺

Multipartite setting: Keevash, 18⁺

Quasirandom hypergraphs:

 $\epsilon > 0$, $t \in \mathbb{N}$, $d \in (0,1]$ and suppose G has n vertices. G is (ϵ, t, d) -typical if

$$\left|\bigcap_{S\in\mathcal{S}}N_G(S)\right|=(1\pm\epsilon)d^{|\mathcal{S}|}n$$

for all sets S of (k-1)-sets of V(G) with $|S| \leq t$.

Theorem (Ehard, J., 2020⁺) $\forall k, \alpha, d_0 > 0 \exists n_0, t \in \mathbb{N}, \varepsilon > 0$:

Theorem (Ehard, J., 2020⁺) $\forall k, \alpha, d_0 > 0 \exists n_0, t \in \mathbb{N}, \varepsilon > 0:$ *G* k-graph, $n \ge n_0$ vertices, (ε, t, d) -typical with $d \ge d_0$ Theorem (Ehard, J., 2020⁺) $\forall k, \alpha, d_0 > 0 \exists n_0, t \in \mathbb{N}, \varepsilon > 0:$ *G* k-graph, $n \ge n_0$ vertices, (ε, t, d) -typical with $d \ge d_0$ H_1, \dots, H_ℓ k-graphs, n vertices each, $\Delta_1(H_i) \le \alpha^{-1}$ and $\sum_{i \in [\ell]} e(H_i) \le (1 - \alpha)e(G).$ Theorem (Ehard, J., 2020⁺) $\forall k, \alpha, d_0 > 0 \exists n_0, t \in \mathbb{N}, \varepsilon > 0:$ *G* k-graph, $n \ge n_0$ vertices, (ε, t, d) -typical with $d \ge d_0$ H_1, \ldots, H_ℓ k-graphs, n vertices each, $\Delta_1(H_i) \le \alpha^{-1}$ and $\sum_{i \in [\ell]} e(H_i) \le (1-\alpha)e(G).$ Then *G* contains H_1, \ldots, H_ℓ as edge-disjoint subgraphs.

Multipartite hypergraphs

Theorem (Ehard, J., 2020⁺)

Approx. decomp. of quasirandom multipartite k-*graphs into bounded degree k*-*graphs with the same multipartite structure*.

Theorem (Ehard, J., 2020⁺)

Approx. decomp. of quasirandom multipartite k-*graphs into bounded degree k*-*graphs with the same multipartite structure.*

Hypergraph blow-up lemma for approximate decompositions for quasirandom k-graphs

Theorem (Ehard, J., 2020⁺)

Approx. decomp. of quasirandom multipartite k-*graphs into bounded degree k*-*graphs with the same multipartite structure.*

Hypergraph blow-up lemma for approximate decompositions for quasirandom *k*-graphs Asked by Keevash and Kim, Kühn, Osthus, Tyomkyn

Theorem (Ehard, J., 2020⁺)

Approx. decomp. of quasirandom multipartite k-*graphs into bounded degree k*-*graphs with the same multipartite structure*.

Hypergraph blow-up lemma for approximate decompositions for quasirandom *k*-graphs Asked by Keevash and Kim, Kühn, Osthus, Tyomkyn

More features:

The packing itself exhibits strong quasirandom properties which is very useful for applications

Quasirandom properties I

Quasirandom properties II

Proof ideas

Multipartite setting implies the other setting

Multipartite setting implies the other setting

1. Proceed cluster by cluster: iteratively embed almost all vertices in $\bigcup_{i \in [\ell]} X_i^{H_i}$ into V_j Multipartite setting implies the other setting

1. Proceed cluster by cluster: iteratively embed almost all vertices in $\bigcup_{i \in [\ell]} X_i^{H_i}$ into V_j

2. Complete the embedding using an extra edge slice

Proof ideas II

Proof ideas III

Summary II

Approx. decompositions of quasirandom *k*-graphs in the normal and multipartite setting into bounded degree *k*-graphs

Applications

Consider a hypergraph as a simplicial complex: Hamilton cycle in a k-graph = spanning \mathbb{S}^{k-1}

Applications

Consider a hypergraph as a simplicial complex: Hamilton cycle in a k-graph = spanning \mathbb{S}^{k-1}

Georgakopoulos, Haslegrave, Narayanan, Montgomery, 18⁺: 3-graph G with $\delta(G) \ge (\frac{1}{3} + o(1))n$, then G contains a spanning \mathbb{S}^2

Applications

Consider a hypergraph as a simplicial complex: Hamilton cycle in a k-graph = spanning \mathbb{S}^{k-1}

Georgakopoulos, Haslegrave, Narayanan, Montgomery, 18⁺: 3-graph G with $\delta(G) \ge (\frac{1}{3} + o(1))n$, then G contains a spanning \mathbb{S}^2

Ehard, J. 20⁺: Typical 3-graphs can be approx. decomposed into spanning \mathbb{S}^2
Applications

Consider a hypergraph as a simplicial complex: Hamilton cycle in a k-graph = spanning \mathbb{S}^{k-1}

Georgakopoulos, Haslegrave, Narayanan, Montgomery, 18⁺: 3-graph G with $\delta(G) \ge (\frac{1}{3} + o(1))n$, then G contains a spanning \mathbb{S}^2

Ehard, J. 20⁺: Typical *k*-graphs can be approx. decomposed into spanning \mathbb{S}^{k-1}