Decompositions of Hypergraphs

Felix Joos

July 2020

UNIVERSITÄT
HEIDELBERG
ZUKUNFT
SEIT 1386

Old results

Theorem (Walecki, 1892)
$K_{2 n+1}$ has a decomposition into edge-disjoint Hamilton cycles.

Old results

Theorem (Walecki, 1892)
$K_{2 n+1}$ has a decomposition into edge-disjoint Hamilton cycles.

Theorem (Dirac, 1952)
Every graph G on $n \geq 3$ vertices with $\delta(G) \geq \frac{n}{2}$ contains a Hamilton cycle.

Old results

Theorem (Walecki, 1892)
$K_{2 n+1}$ has a decomposition into edge-disjoint Hamilton cycles.

Theorem (Dirac, 1952)
Every graph G on $n \geq 3$ vertices with $\delta(G) \geq \frac{n}{2}$ contains a Hamilton cycle.

Theorem (Hajnal, Szemerédi, 1970)
$k \mid n$ and $\delta(G) \geq \frac{k-1}{k} n$, then G contains a K_{k}-factor.

Generalizations

Theorem (Csaba, Kühn, Lo, Osthus, Treglown, 2016)
G r-regular with $r \geq \frac{n}{2}$ and even, n large, then G has a Hamilton decomposition.

Generalizations

Theorem (Csaba, Kühn, Lo, Osthus, Treglown, 2016)
G r-regular with $r \geq \frac{n}{2}$ and even, n large, then G has a Hamilton decomposition.

Theorem (Böttcher, Schacht, Taraz, 2009)
$\chi(H)=k, H$ has bandwidth o(n) and $\Delta(H)=O(1)$
$\delta(G) \geq\left(\frac{k-1}{k}+o(1)\right) n$, then $H \subset G$.

Open problems

Conjecture (Nash-Williams, 1970)
$\delta(G) \geq \frac{3 n}{4}$ and G is triangle-divisible, then G has a triangle decomposition

Open problems

Conjecture (Nash-Williams, 1970)
$\delta(G) \geq \frac{3 n}{4}$ and G is triangle-divisible, then G has a triangle decomposition

Problem

Given a graph H, determine δ_{H} where δ_{H} is the least δ such that for every $\varepsilon>0$ and G on n (large) vertices with $\delta(G) \geq(\delta+\varepsilon) n$ has a H-decomposition subject to divisibility conditions?

A step forward

Fractional H-decomposition of G :
ω : $\{$ copies of H in $G\} \rightarrow[0,1]$ such that $\sum_{H \ni e} \omega(H)=1$ for $e \in E(G)$.

A step forward

Fractional H-decomposition of G :
ω : $\{$ copies of H in $G\} \rightarrow[0,1]$ such that $\sum_{H \ni e} \omega(H)=1$ for $e \in E(G)$.
δ_{H}^{*} fractional version of δ_{H}.

A step forward

Fractional H-decomposition of G :
ω : $\{$ copies of H in $G\} \rightarrow[0,1]$ such that $\sum_{H \ni e} \omega(H)=1$ for $e \in E(G)$.
δ_{H}^{*} fractional version of δ_{H}.

Theorem (Barber, Kühn, Lo, Osthus, 2016; Glock, Kühn, Lo, Montgomery, Osthus, 2019)
$\delta_{H} \in\left\{\delta_{H}^{*}, 1-\frac{1}{\chi}, 1-\frac{1}{\chi+1}\right\}$ for $\chi=\chi(H) \geq 5$ solved for bipartite H
General tool: turning fractional decompositions into decompositions

Cycles

Theorem (Barber, Kühn, Lo, Osthus, 2016)
$\delta c_{4}=\frac{2}{3}$ and $\delta c_{2 \ell}=\frac{1}{2}$ for $\ell \geq 3$
$\delta C_{2 \ell+1}=\delta_{C_{2 \ell+1}}^{*}$

Cycles

Theorem (Barber, Kühn, Lo, Osthus, 2016)
$\delta_{C_{4}}=\frac{2}{3}$ and $\delta{c_{2 \ell}}=\frac{1}{2}$ for $\ell \geq 3$
$\delta C_{2 \ell+1}=\delta_{C_{2 \ell+1}}^{*}$

Theorem (J., M. Kühn, 2020+
$\delta c_{2 \ell+1} \rightarrow \frac{1}{2}(\ell \rightarrow \infty)$

Hypergraphs - old results

G k-uniform (k-graph): edges of size k
$d_{m}(S)=$ number of edges containing S for $|S|=m$
$\delta_{m}(G)=\min _{S} d_{m}(S)$
$\delta(G)=\delta_{k-1}(G)$

Hypergraphs - old results

$G k$-uniform (k-graph): edges of size k
$d_{m}(S)=$ number of edges containing S for $|S|=m$
$\delta_{m}(G)=\min _{S} d_{m}(S)$
$\delta(G)=\delta_{k-1}(G)$
tight cycle $=$ cyclic vertex ordering, all k consecutive vertices form an edge

Hypergraphs - old results

$G k$-uniform (k-graph): edges of size k
$d_{m}(S)=$ number of edges containing S for $|S|=m$
$\delta_{m}(G)=\min _{S} d_{m}(S)$
$\delta(G)=\delta_{k-1}(G)$
tight cycle $=$ cyclic vertex ordering, all k consecutive vertices form an edge

Theorem (Rödl, Ruciński, Szemerédi, 2008)
$\delta(G) \geq\left(\frac{1}{2}+o(1)\right) n$, then G contains a (tight) Hamilton cycle

Hypergraphs - old results

$G k$-uniform (k-graph): edges of size k
$d_{m}(S)=$ number of edges containing S for $|S|=m$
$\delta_{m}(G)=\min _{S} d_{m}(S)$
$\delta(G)=\delta_{k-1}(G)$
tight cycle $=$ cyclic vertex ordering, all k consecutive vertices form an edge

Theorem (Rödl, Ruciński, Szemerédi, 2008)
$\delta(G) \geq\left(\frac{1}{2}+o(1)\right) n$, then G contains a (tight) Hamilton cycle
Theorem (Lang, Sahueza-Matamala; Polcyn, Reiher, Rödl, Schülke, 2020^{+})
$\delta_{k-2}(G) \geq\left(\frac{5}{9}+o(1)\right) n^{2} / 2$, then G contains a (tight) Hamilton cycle

New results

New results

Theorem (J., Kühn, 2020 ${ }^{+}$)
$\delta_{C_{\ell}^{(k)}}^{*} \rightarrow \frac{1}{2}$ for $\ell \rightarrow \infty$

New results

Theorem (J., Kühn, 2020 ${ }^{+}$)
$\delta_{C_{\ell}^{(k)}}^{*} \rightarrow \frac{1}{2}$ for $\ell \rightarrow \infty$

Proof method: Restriction systems + random walks

Proof Sketch

1 Simple random walk on a regular, nou-bipartite, connected graph
\Rightarrow Uniform limit distribution
2 Find ad-regular subgraph in the line graph

degree $>d$: delete some edges
restriction system

3 Markov chain on ordered edges (avoid walking around a velex)
4. $\mathbb{P}[$ from \vec{e} to \vec{f} in k seeps $]=p_{k} \Leftrightarrow \# k$-walks from \vec{e} to $\vec{f}=p_{k} d^{k}$ conform with the restriction system
$5 P_{h} \xrightarrow[h \rightarrow \infty]{\longrightarrow} \frac{1}{2 e(G)} \quad$ (very quickly in k)
$\sum_{\text {ind. of } e \text { and } f!}$

New results II

New results II

Theorem (Rödl, Ruciński, Szemerédi, 2008)
$\forall \epsilon>0, k \in \mathbb{N}$ the following holds for all large n :
$G k$-graph with $\delta(G) \geq\left(\frac{1}{2}+\varepsilon\right) n$, then G contains a (tight) Hamilton cycle

New results II

Theorem (Rödl, Ruciński, Szemerédi, 2008)
$\forall \epsilon>0, k \in \mathbb{N}$ the following holds for all large n :
$G k$-graph with $\delta(G) \geq\left(\frac{1}{2}+\varepsilon\right) n$, then G contains a (tight) Hamilton cycle

Theorem (J., Kühn, Schülke, 2020^{+})
$\forall \epsilon>0, k \in \mathbb{N} \exists \epsilon^{\prime}>0$ such that for all large n :

New results II

Theorem (Rödl, Ruciński, Szemerédi, 2008)
$\forall \epsilon>0, k \in \mathbb{N}$ the following holds for all large n :
$G k$-graph with $\delta(G) \geq\left(\frac{1}{2}+\varepsilon\right) n$, then G contains a (tight) Hamilton cycle

Theorem (J., Kühn, Schülke, 2020^{+})
$\forall \epsilon>0, k \in \mathbb{N} \exists \epsilon^{\prime}>0$ such that for all large n :

- G k-graph with $\delta(G) \geq\left(\frac{1}{2}+\epsilon\right) n$

New results II

Theorem (Rödl, Ruciński, Szemerédi, 2008)
$\forall \epsilon>0, k \in \mathbb{N}$ the following holds for all large n :
$G k$-graph with $\delta(G) \geq\left(\frac{1}{2}+\varepsilon\right) n$, then G contains a (tight) Hamilton cycle

Theorem (J., Kühn, Schülke, 2020^{+})
$\forall \epsilon>0, k \in \mathbb{N} \exists \epsilon^{\prime}>0$ such that for all large n :

- G k-graph with $\delta(G) \geq\left(\frac{1}{2}+\epsilon\right) n$
- $\left|d_{1}(v)-d_{1}(u)\right| \leq \epsilon^{\prime} n^{k-1}$

New results II

Theorem (Rödl, Ruciński, Szemerédi, 2008)
$\forall \epsilon>0, k \in \mathbb{N}$ the following holds for all large n :
$G k$-graph with $\delta(G) \geq\left(\frac{1}{2}+\varepsilon\right) n$, then G contains a (tight) Hamilton cycle

Theorem (J., Kühn, Schülke, 2020^{+})
$\forall \epsilon>0, k \in \mathbb{N} \exists \epsilon^{\prime}>0$ such that for all large n :

- G k-graph with $\delta(G) \geq\left(\frac{1}{2}+\epsilon\right) n$
- $\left|d_{1}(v)-d_{1}(u)\right| \leq \epsilon^{\prime} n^{k-1}$ then G contains $\left(e(G)-\epsilon n^{k}\right) / n$ edge-disjoint Hamilton cycles.

New results II

Theorem (J., Kühn, Schülke, 2020^{+})
$\forall \epsilon>0, k \in \mathbb{N} \exists \epsilon^{\prime}>0$ such that for all large n :

- G k-graph with $\delta(G) \geq\left(\frac{1}{2}+\epsilon\right) n$
- $\left|d_{1}(v)-d_{1}(u)\right| \leq \epsilon^{\prime} n^{k-1}$ then G contains $\left(e(G)-\epsilon n^{k}\right) / n$ edge-disjoint Hamilton cycles.

New results II

Theorem (J., Kühn, Schülke, 2020^{+})
$\forall \epsilon>0, k \in \mathbb{N} \exists \epsilon^{\prime}>0$ such that for all large n :

- G k-graph with $\delta(G) \geq\left(\frac{1}{2}+\epsilon\right) n$
- $\left|d_{1}(v)-d_{1}(u)\right| \leq \epsilon^{\prime} n^{k-1}$ then G contains $\left(e(G)-\epsilon n^{k}\right) / n$ edge-disjoint Hamilton cycles.

Corollary
Vertex-regular k-graphs G with $\delta(G) \geq\left(\frac{1}{2}+o(1)\right) n$ can be approximately decomposed into Hamilton cycles with an arbitrary good precision.

New results II

Theorem (J., Kühn, Schülke, 2020^{+})
$\forall \epsilon>0, k \in \mathbb{N} \exists \epsilon^{\prime}>0$ such that for all large n :

- G k-graph with $\delta(G) \geq\left(\frac{1}{2}+\epsilon\right) n$
- $\left|d_{1}(v)-d_{1}(u)\right| \leq \epsilon^{\prime} n^{k-1}$ then G contains $\left(e(G)-\epsilon n^{k}\right) / n$ edge-disjoint Hamilton cycles.

Corollary

Vertex-regular k-graphs G with $\delta(G) \geq\left(\frac{1}{2}+o(1)\right) n$ can be approximately decomposed into Hamilton cycles with an arbitrary good precision.

Proof method: $\delta_{C_{\ell}}^{*} \leq \frac{1}{2}+\epsilon$ for large enough ℓ; random process; absorption

Summary I

Summary I

- Fractional ℓ-cycle decompositions

Summary I

- Fractional ℓ-cycle decompositions
- approx. decompositions into Hamilton cycles

Summary I

- Fractional ℓ-cycle decompositions
- approx. decompositions into Hamilton cycles in hypergraphs under very weak assumptions

Graph decompositions

Three conjectures:

- Ringel: $K_{2 n+1}$ into any tree with n edges
- Tree packing conj.: K_{n} into trees T_{1}, \ldots, T_{n-1} with $e\left(T_{i}\right)=i$
- Oberwolfach problem: $K_{2 n+1}$ into any spanning union of cycles

Graph decompositions - progress

Approximate decompositions:

- $\Delta=O(1)$, trees, almost spanning, K_{n} Böttcher, Hlacký, Piguet, Taraz, 16

Graph decompositions - progress

Approximate decompositions:

- $\Delta=O(1)$, trees, almost spanning, K_{n} Böttcher, Hlacký, Piguet, Taraz, 16
- $\Delta=O(1)$, separable, almost spanning, K_{n} Messuti, Rödl, Schacht, 17

Graph decompositions - progress

Approximate decompositions:

- $\Delta=O(1)$, trees, almost spanning, K_{n} Böttcher, Hacký, Piguet, Taraz, 16
- $\Delta=O(1)$, separable, almost spanning, K_{n} Messuti, Rödl, Schacht, 17
- $\Delta=O(1)$, separable, spanning, K_{n} Ferber, Lee, Mousset, 16

Graph decompositions - progress

Approximate decompositions:

- $\Delta=O(1)$, trees, almost spanning, K_{n} Böttcher, Hlacký, Piguet, Taraz, 16
- $\Delta=O(1)$, separable, almost spanning, K_{n} Messuti, Rödl, Schacht, 17
- $\Delta=O(1)$, separable, spanning, K_{n} Ferber, Lee, Mousset, 16
- $\Delta=O(1)$, spanning, multipart., quasiran. Kim, Kühn, Osthus, Tyomkyn, 19

Graph decompositions - progress

Approximate decompositions:

- $\Delta=O(1)$, trees, almost spanning, K_{n} Böttcher, Hlacký, Piguet, Taraz, 16
- $\Delta=O(1)$, separable, almost spanning, K_{n} Messuti, Rödl, Schacht, 17
- $\Delta=O(1)$, separable, spanning, K_{n} Ferber, Lee, Mousset, 16
- $\Delta=O(1)$, spanning, multipart., quasiran. Kim, Kühn, Osthus, Tyomkyn, 19
- $\Delta \leq$ poly $p n$, trees, spanning, $G_{n, p}$ Ferber, Samotij, 18^{+}

Graph decompositions - progress

Approximate decompositions:

- $\Delta=O(1)$, trees, almost spanning, K_{n} Böttcher, Hacký, Piguet, Taraz, 16
- $\Delta=O(1)$, separable, almost spanning, K_{n} Messuti, Rödl, Schacht, 17
- $\Delta=O(1)$, separable, spanning, K_{n} Ferber, Lee, Mousset, 16
- $\Delta=O(1)$, spanning, multipart., quasiran. Kim, Kühn, Osthus, Tyomkyn, 19
- $\Delta \leq$ poly $p n$, trees, spanning, $G_{n, p}$ Ferber, Samotij, 18^{+}
- $\Delta \leq n / \log n$, bo. dege., spanning, quasiran. Allen, Böttcher, Hladký, Piguet, 19

Graph decompositions - progress

Approximate decompositions:

- $\Delta=O(1)$, trees, almost spanning, K_{n} Böttcher, Hacký, Piguet, Taraz, 16
- $\Delta=O(1)$, separable, almost spanning, K_{n} Messuti, Rödl, Schacht, 17
- $\Delta=O(1)$, separable, spanning, K_{n} Ferber, Lee, Mousset, 16
- $\Delta=O(1)$, spanning, multipart., quasiran. Kim, Kühn, Osthus, Tyomkyn, 19
- $\Delta \leq$ poly $p n$, trees, spanning, $G_{n, p}$ Ferber, Samotij, 18^{+}
- $\Delta \leq n / \log n$, bo. dege., spanning, quasiran. Allen, Böttcher, Hladký, Piguet, 19

Decompositions:

- $\Delta=O(1)$, trees, (almost) spanning, quasiran. J., Kim, Kühn, Osthus, 19

Graph decompositions - progress

Approximate decompositions:

- $\Delta=O(1)$, trees, almost spanning, K_{n} Böttcher, Hacký, Piguet, Taraz, 16
- $\Delta=O(1)$, separable, almost spanning, K_{n} Messuti, Rödl, Schacht, 17
- $\Delta=O(1)$, separable, spanning, K_{n} Ferber, Lee, Mousset, 16
- $\Delta=O(1)$, spanning, multipart., quasiran. Kim, Kühn, Osthus, Tyomkyn, 19
- $\Delta \leq$ poly $p n$, trees, spanning, $G_{n, p}$ Ferber, Samotij, 18^{+}
- $\Delta \leq n / \log n$, bo. dege., spanning, quasiran. Allen, Böttcher, Hladký, Piguet, 19

Decompositions:

- $\Delta=O(1)$, trees, (almost) spanning, quasiran. J., Kim, Kühn, Osthus, 19
- Oberwolfach problem Glock, J., Kim, Kühn, Osthus, 18^{+}

Graph decompositions - progress

Approximate decompositions:

- $\Delta=O(1)$, trees, almost spanning, K_{n} Böttcher, Hacký, Piguet, Taraz, 16
- $\Delta=O(1)$, separable, almost spanning, K_{n} Messuti, Rödl, Schacht, 17
- $\Delta=O(1)$, separable, spanning, K_{n} Ferber, Lee, Mousset, 16
- $\Delta=O(1)$, spanning, multipart., quasiran. Kim, Kühn, Osthus, Tyomkyn, 19
- $\Delta \leq$ poly $p n$, trees, spanning, $G_{n, p}$ Ferber, Samotij, 18^{+}
- $\Delta \leq n / \log n$, bo. dege., spanning, quasiran. Allen, Böttcher, Hladký, Piguet, 19

Decompositions:

- $\Delta=O(1)$, trees, (almost) spanning, quasiran. J., Kim, Kühn, Osthus, 19
- Oberwolfach problem Glock, J., Kim, Kühn, Osthus, 18^{+}
- as ABHP + many leaves Allen, Böttcher, Clemens, Taraz, 19^{+}

Graph decompositions - progress

Approximate decompositions:

- $\Delta=O(1)$, trees, almost spanning, K_{n} Böttcher, Hacký, Piguet, Taraz, 16
- $\Delta=O(1)$, separable, almost spanning, K_{n} Messuti, Rödl, Schacht, 17
- $\Delta=O(1)$, separable, spanning, K_{n} Ferber, Lee, Mousset, 16
- $\Delta=O(1)$, spanning, multipart., quasiran. Kim, Kühn, Osthus, Tyomkyn, 19
- $\Delta \leq$ poly $p n$, trees, spanning, $G_{n, p}$ Ferber, Samotij, 18^{+}
- $\Delta \leq n / \log n$, bo. dege., spanning, quasiran. Allen, Böttcher, Hladký, Piguet, 19

Decompositions:

- $\Delta=O(1)$, trees, (almost) spanning, quasiran. J., Kim, Kühn, Osthus, 19
- Oberwolfach problem Glock, J., Kim, Kühn, Osthus, 18^{+}
- as ABHP + many leaves Allen, Böttcher, Clemens, Taraz, 19^{+}
- Ringel's conjecture Pokrovskiy, Montgomery, Sudakov, 20^{+}

Graph decompositions - progress

Approximate decompositions:

- $\Delta=O(1)$, trees, almost spanning, K_{n} Böttcher, Hacký, Piguet, Taraz, 16
- $\Delta=O(1)$, separable, almost spanning, K_{n} Messuti, Rödl, Schacht, 17
- $\Delta=O(1)$, separable, spanning, K_{n} Ferber, Lee, Mousset, 16
- $\Delta=O(1)$, spanning, multipart., quasiran. Kim, Kühn, Osthus, Tyomkyn, 19
- $\Delta \leq$ poly $p n$, trees, spanning, $G_{n, p}$ Ferber, Samotij, 18^{+}
- $\Delta \leq n / \log n$, bo. dege., spanning, quasiran. Allen, Böttcher, Hladký, Piguet, 19

Decompositions:

- $\Delta=O(1)$, trees, (almost) spanning, quasiran. J., Kim, Kühn, Osthus, 19
- Oberwolfach problem Glock, J., Kim, Kühn, Osthus, 18^{+}
- as ABHP + many leaves Allen, Böttcher, Clemens, Taraz, 19^{+}
- Ringel's conjecture Pokrovskiy, Montgomery, Sudakov, 20^{+}
- 2-factors, quasiran. Keevash, Staden, 20^{+}

Graph decompositions - progress

Approximate decompositions:

- $\Delta=O(1)$, trees, almost spanning, K_{n} Böttcher, Hladký, Piguet, Taraz, 16
- $\Delta=O(1)$, separable, almost spanning, K_{n} Messuti, Rödl, Schacht, 17
- $\Delta=O(1)$, separable, spanning, K_{n} Ferber, Lee, Mousset, 16
- $\Delta=O(1)$, spanning, multipart., quasiran. Kim, Kühn, Osthus, Tyomkyn, 19
- $\Delta \leq$ poly $p n$, trees, spanning, $G_{n, p}$ Ferber, Samotij, 18^{+}
- $\Delta \leq n / \log n$, bo. dege., spanning, quasiran. Allen, Böttcher, Hladký, Piguet, 19

Decompositions:

- $\Delta=O(1)$, trees, (almost) spanning, quasiran. J., Kim, Kühn, Osthus, 19
- Oberwolfach problem Glock, J., Kim, Kühn, Osthus, 18^{+}
- as ABHP + many leaves Allen, Böttcher, Clemens, Taraz, 19^{+}
- Ringel's conjecture Pokrovskiy, Montgomery, Sudakov, 20^{+}
- 2-factors, quasiran. Keevash, Staden, 20^{+}
- Ringel's conjecture, quasiran. Keevash, Staden, 20^{+}

Hypergraph decompositions - progress

Hypergraph decompositions - progress

Existence conjecture: Keevash, 14^{+}

Hypergraph decompositions - progress

Existence conjecture: Keevash, 14^{+}
Alternative proof + extensions: Glock, Kühn, Lo, Osthus, 17^{+}

Hypergraph decompositions - progress

Existence conjecture: Keevash, 14^{+}
Alternative proof + extensions: Glock, Kühn, Lo, Osthus, 17^{+}
Multipartite setting: Keevash, 18^{+}

Hypergraph decompositions - progress

Existence conjecture: Keevash, 14^{+}
Alternative proof + extensions: Glock, Kühn, Lo, Osthus, 17^{+}
Multipartite setting: Keevash, 18^{+}

Quasirandom hypergraphs:
$\epsilon>0, t \in \mathbb{N}, d \in(0,1]$ and suppose G has n vertices.
G is (ϵ, t, d)-typical if

$$
\left|\bigcap_{S \in \mathcal{S}} N_{G}(S)\right|=(1 \pm \epsilon) d^{|\mathcal{S}|}{ }_{n}
$$

for all sets \mathcal{S} of $(k-1)$-sets of $V(G)$ with $|\mathcal{S}| \leq t$.

New results III

Theorem (Ehard, J., 2020+
$\forall k, \alpha, d_{0}>0 \exists n_{0}, t \in \mathbb{N}, \varepsilon>0$:

New results III

Theorem (Ehard, J., 2020 ${ }^{+}$)
$\forall k, \alpha, d_{0}>0 \exists n_{0}, t \in \mathbb{N}, \varepsilon>0$:
G k-graph, $n \geq n_{0}$ vertices, (ε, t, d)-typical with $d \geq d_{0}$

New results III

Theorem (Ehard, J., 2020+
$\forall k, \alpha, d_{0}>0 \exists n_{0}, t \in \mathbb{N}, \varepsilon>0$:
G k-graph, $n \geq n_{0}$ vertices, (ε, t, d)-typical with $d \geq d_{0}$ H_{1}, \ldots, H_{ℓ} k-graphs, n vertices each, $\Delta_{1}\left(H_{i}\right) \leq \alpha^{-1}$ and $\sum_{i \in[\ell]} e\left(H_{i}\right) \leq(1-\alpha) e(G)$.

New results III

Theorem (Ehard, J., 2020+
$\forall k, \alpha, d_{0}>0 \exists n_{0}, t \in \mathbb{N}, \varepsilon>0$:
$G k$-graph, $n \geq n_{0}$ vertices, (ε, t, d)-typical with $d \geq d_{0}$ H_{1}, \ldots, H_{ℓ} k-graphs, n vertices each, $\Delta_{1}\left(H_{i}\right) \leq \alpha^{-1}$ and $\sum_{i \in[\ell]} e\left(H_{i}\right) \leq(1-\alpha) e(G)$. Then G contains H_{1}, \ldots, H_{ℓ} as edge-disjoint subgraphs.

Multipartite hypergraphs
$k=3$ (for sinplicity)

$$
\begin{aligned}
& \cdot V(R)=\{1,-\cdot r\} \\
& \cdot \Delta_{1}(R) \leqslant \alpha^{-1} \\
& \cdot\left|X_{i}\right|=\left|V_{i}\right|=(1 \pm \varepsilon)_{n} \\
& \cdot r \leq n^{\log n} \\
& \cdot \sum_{H \in \mathcal{R}} e_{H}\left(X_{i, 1}^{H}-X_{i k}^{H}\right) \leqslant(1-\alpha) d n^{k}
\end{aligned}
$$

New results IV

Theorem (Ehard, J., 2020+
Approx. decomp. of quasirandom multipartite k-graphs into bounded degree k-graphs with the same multipartite structure.

New results IV

Theorem (Ehard, J., 2020+
Approx. decomp. of quasirandom multipartite k-graphs into bounded degree k-graphs with the same multipartite structure.

Hypergraph blow-up lemma for approximate decompositions for quasirandom k-graphs

New results IV

Theorem (Ehard, J., 2020+
Approx. decomp. of quasirandom multipartite k-graphs into bounded degree k-graphs with the same multipartite structure.

Hypergraph blow-up lemma for approximate decompositions for quasirandom k-graphs
Asked by Keevash and Kim, Kühn, Osthus, Tyomkyn

New results IV

Theorem (Ehard, J., 2020+ ${ }^{+}$
Approx. decomp. of quasirandom multipartite k-graphs into bounded degree k-graphs with the same multipartite structure.

Hypergraph blow-up lemma for approximate decompositions for quasirandom k-graphs
Asked by Keevash and Kim, Kühn, Osthus, Tyomkyn

More features:

The packing itself exhibits strong quasirandom properties which is very useful for applications

Quasirandom properties I

Quasirandom properties II

Proof ideas

Multipartite setting implies the other setting

Proof ideas

Multipartite setting implies the other setting

1. Proceed cluster by cluster: iteratively embed almost all vertices in $\bigcup_{i \in[\ell]} X_{j}^{H_{i}}$ into V_{j}

Proof ideas

Multipartite setting implies the other setting

1. Proceed cluster by cluster: iteratively embed almost all vertices in $\bigcup_{i \in[\ell]} X_{j}^{H_{i}}$ into V_{j}
2. Complete the embedding using an extra edge slice

Proof ideas II

Proof ideas III

Summary II

Approx. decompositions of quasirandom k-graphs in the normal and multipartite setting into bounded degree k-graphs

Applications

Consider a hypergraph as a simplicial complex: Hamilton cycle in a k-graph $=$ spanning \mathbb{S}^{k-1}

Applications

Consider a hypergraph as a simplicial complex: Hamilton cycle in a k-graph $=$ spanning \mathbb{S}^{k-1}

Georgakopoulos, Haslegrave, Narayanan, Montgomery, 18+: 3-graph G with $\delta(G) \geq\left(\frac{1}{3}+o(1)\right) n$, then G contains a spanning \mathbb{S}^{2}

Applications

Consider a hypergraph as a simplicial complex: Hamilton cycle in a k-graph $=$ spanning \mathbb{S}^{k-1}

Georgakopoulos, Haslegrave, Narayanan, Montgomery, 18+: 3 -graph G with $\delta(G) \geq\left(\frac{1}{3}+o(1)\right) n$, then G contains a spanning \mathbb{S}^{2}

Ehard, J. 20 ${ }^{+}$:
Typical 3-graphs can be approx. decomposed into spanning \mathbb{S}^{2}

Applications

Consider a hypergraph as a simplicial complex: Hamilton cycle in a k-graph $=$ spanning \mathbb{S}^{k-1}

Georgakopoulos, Haslegrave, Narayanan, Montgomery, 18+: 3 -graph G with $\delta(G) \geq\left(\frac{1}{3}+o(1)\right) n$, then G contains a spanning \mathbb{S}^{2}

Ehard, J. 20 ${ }^{+}$:
Typical k-graphs can be approx. decomposed into spanning \mathbb{S}^{k-1}

