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Theorem (Dirac, 1952)

Every graph G on n > 3 vertices with 6(G) > 5 contains a Hamilton cycle.

Theorem (Hajnal Szemerédi, 1970)
k|n and 5(G) > XZXn, then G contains a K-factor.
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Theorem (Csaba, Kiihn, Lo, Osthus, Treglown, 2016)

G r-regular with r > g and even, n large, then G has a Hamilton
decomposition.

Theorem (Bottcher, Schacht, Taraz, 2009)
X(H) =k, H has bandwidth o(n) and A(H) = O(1)
5(G) > (522 +o(1))n, then HC G.
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Open problems

Conjecture (Nash-Williams, 1970)
6(G) > 32 and G is triangle-divisible, then G has a triangle decomposition

Problem

Given a graph H, determine §iy where 0y is the least § such that for
every € >0 and G on n (large) vertices with 6(G) > (6 +¢)n has a
H-decomposition subject to divisibility conditions?
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A step forward

Fractional H-decomposition of G:
w: {copies of H in G} — [0,1] such that }_,,- .w(H) =1 for e € E(G).

0y, fractional version of 0.

Theorem (Barber, Kiihn, Lo, Osthus, 2016; Glock, Kiihn, Lo,
Montgomery, Osthus, 2019)

Sn € {0} 1— 11— g} for x=x(H)>5

solved for blpart/te H

General tool: turning fractional decompositions into decompositions
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Cycles

Theorem (Barber, Kiihn, Lo, Osthus, 2016)
5c, =% and éc,, =% for (>3

Coet1 = YCppn

Theorem (J., M. Kiihn, 20207)

6(_-2“1—)% (¢t —o0)
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Hypergraphs - old results

G k-uniform (k-graph): edges of size k

dm(S) = number of edges containing S for |S|=m

Im(G) =mingdn(S)

6(G) = 0k-1(G)

tight cycle = cyclic vertex ordering, all k consecutive vertices form an
edge

Theorem (Rédl, Rucinski, Szemerédi, 2008)
6(G) > (5+o(1))n, then G contains a (tight) Hamilton cycle

Theorem (Lang, Sahueza-Matamala; Polcyn, Reiher, Rodl,
Schiilke, 2020T)
5k—2(G) > (3 4+ 0(1))n?/2, then G contains a (tight) Hamilton cycle



New results



New results

Theorem (J., Kithn, 2020™)

0%y = 5 for L= 00
[4



New results

Theorem (J., Kithn, 2020™)

0%y = 5 for L= 00
[4

Proof method: Restriction systems + random walks
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New results 1l

Theorem (J., Kiithn, Schiilke, 20207)

Ve >0,k € N 3 € >0 such that for all large n:

e G k-graph with 6(G) > (3 +¢€)n

o |di(v)—di(u)| < €nk1

then G contains (e(G) —en*)/n edge-disjoint Hamilton cycles.

Corollary

Vertex-regular k-graphs G with 6(G) > (% +o0(1))n can be approximately
decomposed into Hamilton cycles with an arbitrary good precision.

Proof method: 52‘_—@ < %4—6 for large enough ¢; random process; absorption
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Summary |

e Fractional /-cycle decompositions
e approx. decompositions into Hamilton cycles

in hypergraphs under very weak assumptions



Graph decompositions

Three conjectures:
» Ringel: Kz,t1 into any tree with n edges
» Tree packing conj.: K, into trees Ti,..., To—1 with e(T;) =i

» Oberwolfach problem: Kj,1 into any spanning union of cycles
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Hypergraph decompositions - progress

Existence conjecture: Keevash, 14"

Alternative proof + extensions: Glock, Kiihn, Lo, Osthus, 177
Multipartite setting: Keevash, 18T

Quasirandom hypergraphs:

e>0, teN, de(0,1] and suppose G has n vertices.

Gis if

N NG(S)‘ = (1+€)d'Sln
Ses

for all sets S of (k —1)-sets of V(G) with |S| < t.
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New results Il

Theorem (Ehard, J., 2020™)

Vk,o,dg >0 3 ng,t € N,e > 0:

G k-graph, n > ng vertices, (¢,t,d)-typical with d > dy
Hi,...,Hy k-graphs, n vertices each,

Aq(H) <a ! and >icrg €(Hi) < (1—a)e(G).

Then G contains Hy, ..., Hy as edge-disjoint subgraphs.



Multipartite hypergraphs
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New results IV

Theorem (Ehard, J., 2020™)

Approx. decomp. of quasirandom multipartite k-graphs
into bounded degree k-graphs with the same multipartite structure.

Hypergraph blow-up lemma for approximate decompositions for
quasirandom k-graphs
Asked by Keevash and Kim, Kiihn, Osthus, Tyomkyn

More features:
The packing itself exhibits strong quasirandom properties which is very
useful for applications
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Proof ideas

Multipartite setting implies the other setting

1. Proceed cluster by cluster:
iteratively embed almost all vertices in (J;c(y XJ-H" into V;

2. Complete the embedding using an extra edge slice



Proof ideas Il
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Summary |

Approx. decompositions of quasirandom k-graphs
in the normal and multipartite setting
into bounded degree k-graphs
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