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Old results

Theorem (Walecki, 1892)
K2n+1 has a decomposition into edge-disjoint Hamilton cycles.

Theorem (Dirac, 1952)
Every graph G on n≥ 3 vertices with δ(G)≥ n

2 contains a Hamilton cycle.

Theorem (Hajnal, Szemerédi, 1970)
k|n and δ(G)≥ k−1

k n, then G contains a Kk -factor.
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Generalizations

Theorem (Csaba, Kühn, Lo, Osthus, Treglown, 2016)
G r-regular with r ≥ n

2 and even, n large, then G has a Hamilton
decomposition.

Theorem (Böttcher, Schacht, Taraz, 2009)
χ(H) = k, H has bandwidth o(n) and ∆(H) = O(1)
δ(G)≥ ( k−1

k + o(1))n, then H ⊂ G.
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Open problems

Conjecture (Nash-Williams, 1970)
δ(G)≥ 3n

4 and G is triangle-divisible, then G has a triangle decomposition

Problem
Given a graph H, determine δH where δH is the least δ such that for
every ε > 0 and G on n (large) vertices with δ(G)≥ (δ+ε)n has a
H-decomposition subject to divisibility conditions?
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A step forward

Fractional H-decomposition of G :
ω : {copies of H in G}→ [0,1] such that

∑
H3e ω(H) = 1 for e ∈ E (G).

δ∗H fractional version of δH .

Theorem (Barber, Kühn, Lo, Osthus, 2016; Glock, Kühn, Lo,
Montgomery, Osthus, 2019)
δH ∈ {δ∗H ,1−

1
χ ,1−

1
χ+1} for χ= χ(H)≥ 5

solved for bipartite H
General tool: turning fractional decompositions into decompositions
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Cycles

Theorem (Barber, Kühn, Lo, Osthus, 2016)
δC4 = 2

3 and δC2`
= 1

2 for `≥ 3
δC2`+1 = δ∗C2`+1

Theorem (J., M. Kühn, 2020+)
δC2`+1 →

1
2 (`→∞)
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Theorem (Barber, Kühn, Lo, Osthus, 2016)
δC4 = 2

3 and δC2`
= 1

2 for `≥ 3
δC2`+1 = δ∗C2`+1

Theorem (J., M. Kühn, 2020+)
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Hypergraphs - old results

G k-uniform (k-graph): edges of size k
dm(S) = number of edges containing S for |S|= m
δm(G) = minS dm(S)
δ(G) = δk−1(G)

tight cycle = cyclic vertex ordering, all k consecutive vertices form an
edge

Theorem (Rödl, Ruciński, Szemerédi, 2008)
δ(G)≥ ( 1

2 + o(1))n, then G contains a (tight) Hamilton cycle

Theorem (Lang, Sahueza-Matamala; Polcyn, Reiher, Rödl,
Schülke, 2020+)
δk−2(G)≥ ( 5

9 + o(1))n2/2, then G contains a (tight) Hamilton cycle
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New results II

Theorem (Rödl, Ruciński, Szemerédi, 2008)
∀ε > 0,k ∈ N the following holds for all large n:
G k-graph with δ(G)≥ ( 1

2 +ε)n,
then G contains a (tight) Hamilton cycle

Theorem (J., Kühn, Schülke, 2020+)
∀ε > 0,k ∈ N ∃ ε′ > 0 such that for all large n:
• G k-graph with δ(G)≥ ( 1

2 + ε)n
• |d1(v)−d1(u)| ≤ ε′nk−1

then G contains (e(G)− εnk)/n edge-disjoint Hamilton cycles.

Corollary
Vertex-regular k-graphs G with δ(G)≥ ( 1

2 + o(1))n can be approximately
decomposed into Hamilton cycles with an arbitrary good precision.

Proof method: δ∗C`
≤ 1

2 +ε for large enough `; random process; absorption



New results II
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• Fractional `-cycle decompositions
• approx. decompositions into Hamilton cycles

in hypergraphs under very weak assumptions
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Graph decompositions

Three conjectures:
I Ringel: K2n+1 into any tree with n edges
I Tree packing conj.: Kn into trees T1, . . . ,Tn−1 with e(Ti ) = i
I Oberwolfach problem: K2n+1 into any spanning union of cycles



Graph decompositions - progress

Approximate decompositions:
• ∆ = O(1), trees, almost spanning, Kn Böttcher, Hladký, Piguet, Taraz, 16

• ∆ = O(1), separable, almost spanning, Kn Messuti, Rödl, Schacht, 17
• ∆ = O(1), separable, spanning, Kn Ferber, Lee, Mousset, 16
• ∆ = O(1), spanning, multipart., quasiran. Kim, Kühn, Osthus, Tyomkyn, 19
• ∆≤ polypn, trees, spanning, Gn,p Ferber, Samotij, 18+

• ∆≤ n/ logn, bo. dege., spanning, quasiran. Allen, Böttcher, Hladký, Piguet, 19

Decompositions:
• ∆ = O(1), trees, (almost) spanning, quasiran. J., Kim, Kühn, Osthus, 19
• Oberwolfach problem Glock, J., Kim, Kühn, Osthus, 18+

• as ABHP + many leaves Allen, Böttcher, Clemens, Taraz, 19+

• Ringel’s conjecture Pokrovskiy, Montgomery, Sudakov, 20+

• 2-factors, quasiran. Keevash, Staden, 20+

• Ringel’s conjecture, quasiran. Keevash, Staden, 20+
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• Oberwolfach problem Glock, J., Kim, Kühn, Osthus, 18+
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• ∆≤ polypn, trees, spanning, Gn,p Ferber, Samotij, 18+

• ∆≤ n/ logn, bo. dege., spanning, quasiran. Allen, Böttcher, Hladký, Piguet, 19
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Decompositions:
• ∆ = O(1), trees, (almost) spanning, quasiran. J., Kim, Kühn, Osthus, 19
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• ∆ = O(1), separable, almost spanning, Kn Messuti, Rödl, Schacht, 17
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• Ringel’s conjecture Pokrovskiy, Montgomery, Sudakov, 20+

• 2-factors, quasiran. Keevash, Staden, 20+

• Ringel’s conjecture, quasiran. Keevash, Staden, 20+



Graph decompositions - progress

Approximate decompositions:
• ∆ = O(1), trees, almost spanning, Kn Böttcher, Hladký, Piguet, Taraz, 16
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• ∆≤ polypn, trees, spanning, Gn,p Ferber, Samotij, 18+

• ∆≤ n/ logn, bo. dege., spanning, quasiran. Allen, Böttcher, Hladký, Piguet, 19
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Hypergraph decompositions - progress

Existence conjecture: Keevash, 14+

Alternative proof + extensions: Glock, Kühn, Lo, Osthus, 17+

Multipartite setting: Keevash, 18+

Quasirandom hypergraphs:
ε > 0, t ∈ N, d ∈ (0,1] and suppose G has n vertices.
G is (ε, t,d)-typical if ∣∣∣∣ ⋂

S∈S
NG (S)

∣∣∣∣= (1± ε)d |S|n

for all sets S of (k−1)-sets of V (G) with |S| ≤ t.
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New results III

Theorem (Ehard, J., 2020+)
∀k,α,d0 > 0 ∃ n0, t ∈ N,ε > 0:

G k-graph, n ≥ n0 vertices, (ε, t,d)-typical with d ≥ d0
H1, . . . ,H` k-graphs, n vertices each,
∆1(Hi )≤ α−1 and

∑
i∈[`] e(Hi )≤ (1−α)e(G).

Then G contains H1, . . . ,H` as edge-disjoint subgraphs.
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New results IV

Theorem (Ehard, J., 2020+)
Approx. decomp. of quasirandom multipartite k-graphs
into bounded degree k-graphs with the same multipartite structure.

Hypergraph blow-up lemma for approximate decompositions for
quasirandom k-graphs
Asked by Keevash and Kim, Kühn, Osthus, Tyomkyn

More features:
The packing itself exhibits strong quasirandom properties which is very
useful for applications
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More features:
The packing itself exhibits strong quasirandom properties which is very
useful for applications



New results IV

Theorem (Ehard, J., 2020+)
Approx. decomp. of quasirandom multipartite k-graphs
into bounded degree k-graphs with the same multipartite structure.

Hypergraph blow-up lemma for approximate decompositions for
quasirandom k-graphs
Asked by Keevash and Kim, Kühn, Osthus, Tyomkyn
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Proof ideas

Multipartite setting implies the other setting

1. Proceed cluster by cluster:
iteratively embed almost all vertices in

⋃
i∈[`] X

Hi
j into Vj

2. Complete the embedding using an extra edge slice
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Proof ideas II
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Proof ideas III
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Summary II

Approx. decompositions of quasirandom k-graphs
in the normal and multipartite setting
into bounded degree k-graphs



Applications

Consider a hypergraph as a simplicial complex:
Hamilton cycle in a k-graph = spanning Sk−1

Georgakopoulos, Haslegrave, Narayanan, Montgomery, 18+:
3-graph G with δ(G)≥ ( 1

3 + o(1))n, then G contains a spanning S2

Ehard, J. 20+:
Typical 3-graphs can be approx. decomposed into spanning S2
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