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Introduction Main Proof Connecting Lemma Absorbing Lemma Covering Lemma Problem and Questions

Introduction

Theorem (Dirac 1952)

Let G be a graph on n ≥ 3 vertices with δ(G) ≥ 1
2n, then G contains a

Hamiltonian cycle.

Goal: Generalization to hypergraphs

Definition (Paths and cycles)

◦ k ≥ 2, k-uniform hypergraph (k-graph): Pair (V ,E ), with vertex
set V and edge set E ⊆ V (k) := {e ⊆ V : |e| = k}

◦ (tight) path (of length `− k + 1): {x1, . . . , x`} ⊂ V , every
consecutive k-tuple of vertices {xi , xi+1, . . . , xi+k−1}
with i ∈ [`− k + 1].
◦ (tight) cycle (of length `): {x1, . . . , x`} ⊂ V , every
consecutive k-tuple of vertices {xi , xi+1, . . . , xi+k−1} with i ∈ Z/nZ
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Introduction

Definition (Different degrees)

◦ For k-graph H = (V ,E ) and S ⊆ V : the degree of S in H dH(S) is
the number of edges e ∈ H with S ⊆ e.

◦ For d ∈ [k − 1], the minimum d-degree δd (H) is the smallest value
of dH(S) taken over all d-element subsets S ⊆ V .

Example

◦ dH({x , y}) is the pair-degree of a vertex pair {x , y}: the number of
edges in H containing {x , y}.

◦ δ2(H) is the minimum pair-degree of a hypergraph H: the smallest
pair-degree taken over all vertex pairs in H.
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Previous results

Theorem (Rödl, R., Szemerédi (2008))
For every k ≥ 2 and large n, every n-vertex k-graph H
with δk−1(H) ≥

( 1
2 + o(1)

)
n contains a Hamiltonian cycle.

Theorem (Rödl, R., Szemerédi (2011))
For large n, every n-vertex 3-graph H with δ2(H) ≥ bn/2c contains a
Hamiltonian cycle.
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Main theorem

Theorem (Polcyn, Reiher, Rödl, R., Schacht, Schülke (2020))

For every α > 0, there exists an integer n0 such that every 4-uniform
hypergraph H with n ≥ n0 vertices and minimum
pair-degree δ2(H) ≥

( 5
9 + α

) n2

2 contains a Hamiltonian cycle.
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Main theorem

Theorem (Polcyn, Reiher, Rödl, R., Schacht, Schülke (2020))

For every α > 0, there exists an integer n0 such that every 4-uniform
hypergraph H with n ≥ n0 vertices and minimum
pair-degree δ2(H) ≥

( 5
9 + α

) n2

2 contains a Hamiltonian cycle.

Conjecture
For all k ≥ 3 and large n, any k-graph H on n vertices
with δk−2(H) ≥

( 5
9 + o(1)

) n2

2 contains a Hamiltonian cycle.

Remark
Proved this summer by Polcyn, Reiher, Rödl, and Schülke, and,
independently, by R. Lang and N. Sanhueza-Matamala.
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Connecting Lemma

Definition
A 3-tuple (x , y , z) ∈ V 3 is called ζ-connectable in H if the set

Uxyz = {v ∈ V : xyz ∈ Hv and xy , yz are "ζ-connectable" in Hv}

has size |Uxyz | ≥ ζn.

Lemma (Connecting Lemma)
There is an integer L such that the following holds. If (a, b, c)
and (x , y , z) are disjoint, connectable triples, then there
are Ω(nL) abc − xyz-paths in H with L inner vertices.
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Proof Idea Connecting Lemma

◦ Let S∗ be the set of sextuples (d1, d2, u, v , d3, d4) such that:

(1) u ∈ Uabc and v ∈ Uxyz
(2) (d1, d2, d3, d4) is a path in Huv
(3) d1d2 is connectable in Hu
(4) d3d4 is connectable in Hv

◦ Can show that |S∗| = Ω(n6)
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Proof Idea Connecting Lemma

u ∈ Uabc , v ∈ Uxyz , (di ) 4-path in Huv , d1, d2 conn. in Hu, d3, d4 conn. in Hv

a b c

d1 d2 u v d3 d4

x y z

U∗ V ∗

15 / 23



Introduction Main Proof Connecting Lemma Absorbing Lemma Covering Lemma Problem and Questions

Absorbing Lemma

Lemma (Absorbing Lemma)

There exists an (absorbing) path PA ⊆ H − R that has the following
properties:

(i ) |V (PA)| is small,
(ii ) the end-triples of PA are connectable, and

(iii ) for every very small set X ⊆ V with |X | ≡ 0 (mod 4), there is a
path in H whose set of vertices is V (PA) ∪ X and whose end-triples
are the same as those of PA.

Remark
The divisibility condition in (iii ) can be dealt with easily by adjusting the
Connecting Lemma.
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Absorbers

v1

v2

v3

v4

complete 4-partite 4-graph
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Proof sketch Absorbing Path

◦ 4-partite, 4-graphs have Turán density 0 "⇒" for each 4-set of
vertices there are many absorbers

◦ Random argument: There is a selection A of 35-vertex tuples such
that:

(i) For all {v1, v2, v3, v4} ∈ V (4), there are many absorbers in A,
(ii) All tuples in A are disjoint,
(iii) |A| is small.

◦ Connect all elements of A into an absorbing path PA

18 / 23
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Covering Lemma

Lemma (Covering Lemma)
There exists a path Q ⊆ H − PA covering almost all vertices.

◦ OR, “equivalently”, there exists a family of disjoint paths C in
H − R − PA covering almost all vertices.

Remark
The proof doesn’t rely on Szemerédi’s regularity lemma.

19 / 23
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Proof Idea Covering Lemma

◦ Consider a longest path Q with this structure (or, a largest family C
of disjoint M-paths):

R

Q
M-paths of Q

◦ Call M-vertex sets blocks and ‘chop off’ the set U of leftover
vertices into blocks (leaving, possibly a remainder); there are
altogether |C|+ b|U|/Mc blocks

◦ Consider a selection S of m blocks (society)

◦ For u ∈ U: if δ1(Hu[S]) ≥ ( 5
9 + o(1)) |S|

2

2 : S is useful for u
◦ Random argument (weighted Janson ineq): there is a society that is

useful for many u ∈ U
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Proof Idea Covering Lemma
Augmenting:

Uspec

S

Creates m + 1 new M-paths

(from 3
4 (M + 1)-paths by inserting

(M − 3)/4 vts of U); replacing in C the m paths from S by the new
ones, yields a larger family C′ – a contradiction !!!
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Problem and Questions

Problem
Given integers k > d > 1, determine the infimal real number αk

d such
that every k-uniform hypergraph H with minimum
d-degree δd (H) ≥

(
αk

d + o(1)
) nk−d

(k−d)! contains a Hamiltonian cycle.

We know that for all k ≥ 2: αk
k−1 = 1/2, for all k ≥ 3: αk

k−2 = 5/9.
The lower bound for the latter by a general construction by J. Han and
Y. Zhao.

Question
Given d, is there a constant βd such that αd

k−d = βd for all k ≥ d + 1?

We know β1 = /2 and β2 = 5/9. Assuming the answer is yes, the
Han-Zhao construction prompts us then to ask the following question:

Question
Is β3 = 5/8?

22 / 23
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THANK YOU FOR YOUR ATTENTION !!!
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