Minimum pair-degree for Hamiltonian cycles in 4-graphs

Joint work with J. Polcyn, Chr. Reiher, V. Rödl, M. Schacht, and B. Schülke*

July 29, 2020

Minimum pair-degree for Hamiltonian cycles in 4-graphs

Joint work with J. Polcyn, Chr. Reiher, V. Rödl, M. Schacht, and B. Schülke*

July 29, 2020

Overview

(1) Introduction
(2) Proof of the main theorem
(3) Connecting Lemma
(4) Absorbing Lemma
(5) Covering Lemma
(6) Problem and Questions

Introduction

Introduction

Theorem (Dirac 1952)
Let G be a graph on $n \geq 3$ vertices with $\delta(G) \geq \frac{1}{2} n$, then G contains a Hamiltonian cycle.

Introduction

Theorem (Dirac 1952)

Let G be a graph on $n \geq 3$ vertices with $\delta(G) \geq \frac{1}{2} n$, then G contains a Hamiltonian cycle.

Goal: Generalization to hypergraphs

Introduction

Theorem (Dirac 1952)
 Let G be a graph on $n \geq 3$ vertices with $\delta(G) \geq \frac{1}{2} n$, then G contains a Hamiltonian cycle.

Goal: Generalization to hypergraphs

Definition (Paths and cycles)

Introduction

Theorem (Dirac 1952)

Let G be a graph on $n \geq 3$ vertices with $\delta(G) \geq \frac{1}{2} n$, then G contains a Hamiltonian cycle.

Goal: Generalization to hypergraphs

Definition (Paths and cycles)

- $k \geq 2$, k-uniform hypergraph (k-graph): Pair (V, E), with vertex set V and edge set $E \subseteq V^{(k)}:=\{e \subseteq V:|e|=k\}$

Introduction

Theorem (Dirac 1952)

Let G be a graph on $n \geq 3$ vertices with $\delta(G) \geq \frac{1}{2} n$, then G contains a Hamiltonian cycle.

Goal: Generalization to hypergraphs

Definition (Paths and cycles)

- $k \geq 2$, k-uniform hypergraph (k-graph): Pair (V, E), with vertex set V and edge set $E \subseteq V^{(k)}:=\{e \subseteq V:|e|=k\}$
- (tight) path (of length $\ell-k+1$): $\left\{x_{1}, \ldots, x_{\ell}\right\} \subset V$, every consecutive k-tuple of vertices $\left\{x_{i}, x_{i+1}, \ldots, x_{i+k-1}\right\}$ with $i \in[\ell-k+1]$.

Introduction

Theorem (Dirac 1952)

Let G be a graph on $n \geq 3$ vertices with $\delta(G) \geq \frac{1}{2} n$, then G contains a Hamiltonian cycle.

Goal: Generalization to hypergraphs

Definition (Paths and cycles)

- $k \geq 2$, k-uniform hypergraph (k-graph): Pair (V, E), with vertex set V and edge set $E \subseteq V^{(k)}:=\{e \subseteq V:|e|=k\}$
- (tight) path (of length $\ell-k+1$): $\left\{x_{1}, \ldots, x_{\ell}\right\} \subset V$, every consecutive k-tuple of vertices $\left\{x_{i}, x_{i+1}, \ldots, x_{i+k-1}\right\}$ with $i \in[\ell-k+1]$.
- (tight) cycle (of length ℓ): $\left\{x_{1}, \ldots, x_{\ell}\right\} \subset V$, every consecutive k-tuple of vertices $\left\{x_{i}, x_{i+1}, \ldots, x_{i+k-1}\right\}$ with $i \in \mathbb{Z} / n \mathbb{Z}$

Introduction

Introduction

Definition (Different degrees)

Introduction

Definition (Different degrees)

- For k-graph $H=(V, E)$ and $S \subseteq V$: the degree of S in $H d_{H}(S)$ is the number of edges $e \in H$ with $S \subseteq e$.

Introduction

Definition (Different degrees)

- For k-graph $H=(V, E)$ and $S \subseteq V$: the degree of S in $H d_{H}(S)$ is the number of edges $e \in H$ with $S \subseteq e$.
- For $d \in[k-1]$, the minimum d-degree $\delta_{d}(H)$ is the smallest value of $d_{H}(S)$ taken over all d-element subsets $S \subseteq V$.

Introduction

Definition (Different degrees)

- For k-graph $H=(V, E)$ and $S \subseteq V$: the degree of S in $H d_{H}(S)$ is the number of edges $e \in H$ with $S \subseteq e$.
- For $d \in[k-1]$, the minimum d-degree $\delta_{d}(H)$ is the smallest value of $d_{H}(S)$ taken over all d-element subsets $S \subseteq V$.

Example

Introduction

Definition (Different degrees)

- For k-graph $H=(V, E)$ and $S \subseteq V$: the degree of S in $H d_{H}(S)$ is the number of edges $e \in H$ with $S \subseteq e$.
- For $d \in[k-1]$, the minimum d-degree $\delta_{d}(H)$ is the smallest value of $d_{H}(S)$ taken over all d-element subsets $S \subseteq V$.

Example

- $d_{H}(\{x, y\})$ is the pair-degree of a vertex pair $\{x, y\}$: the number of edges in H containing $\{x, y\}$.

Introduction

Definition (Different degrees)

- For k-graph $H=(V, E)$ and $S \subseteq V$: the degree of S in $H d_{H}(S)$ is the number of edges $e \in H$ with $S \subseteq e$.
- For $d \in[k-1]$, the minimum d-degree $\delta_{d}(H)$ is the smallest value of $d_{H}(S)$ taken over all d-element subsets $S \subseteq V$.

Example

- $d_{H}(\{x, y\})$ is the pair-degree of a vertex pair $\{x, y\}$: the number of edges in H containing $\{x, y\}$.
- $\delta_{2}(H)$ is the minimum pair-degree of a hypergraph H : the smallest pair-degree taken over all vertex pairs in H.

Previous results

Previous results

Theorem (Rödl, R., Szemerédi (2008))

For every $k \geq 2$ and large n, every n-vertex k-graph H with $\delta_{k-1}(H) \geq\left(\frac{1}{2}+o(1)\right) n$ contains a Hamiltonian cycle.

Previous results

Theorem (Rödl, R., Szemerédi (2008))

For every $k \geq 2$ and large n, every n-vertex k-graph H with $\delta_{k-1}(H) \geq\left(\frac{1}{2}+o(1)\right) n$ contains a Hamiltonian cycle.

Theorem (Rödl, R., Szemerédi (2011))

For large n, every n-vertex 3 -graph H with $\delta_{2}(H) \geq\lfloor n / 2\rfloor$ contains a Hamiltonian cycle.

Previous results

Theorem (Rödl, R., Szemerédi (2008))

For every $k \geq 2$ and large n, every n-vertex k-graph H with $\delta_{k-1}(H) \geq\left(\frac{1}{2}+o(1)\right) n$ contains a Hamiltonian cycle.

Previous results

Theorem (Rödl, R., Szemerédi (2008))

For every $k \geq 2$ and large n, every n-vertex k-graph H with $\delta_{k-1}(H) \geq\left(\frac{1}{2}+o(1)\right) n$ contains a Hamiltonian cycle.

Example

Previous results

Theorem (Rödl, R., Szemerédi (2008))

For every $k \geq 2$ and large n, every n-vertex k-graph H with $\delta_{k-1}(H) \geq\left(\frac{1}{2}+o(1)\right) n$ contains a Hamiltonian cycle.

Previous results

Theorem (Rödl, R., Szemerédi (2008))

For every $k \geq 2$ and large n, every n-vertex k-graph H with $\delta_{k-1}(H) \geq\left(\frac{1}{2}+o(1)\right) n$ contains a Hamiltonian cycle.

Theorem (Reiher, Rödl, R., Schacht, Szemerédi (2019))

For large n, every 3 -graph H satisfying $\delta_{1}(H) \geq\left(\frac{5}{9}+o(1)\right) \frac{n^{2}}{2}$ contains a Hamiltonian cycle.

Previous results

Theorem (Rödl, R., Szemerédi (2008))

For every $k \geq 2$ and large n, every n-vertex k-graph H with $\delta_{k-1}(H) \geq\left(\frac{1}{2}+o(1)\right) n$ contains a Hamiltonian cycle.

Theorem (Reiher, Rödl, R., Schacht, Szemerédi (2019))

For large n, every 3 -graph H satisfying $\delta_{1}(H) \geq\left(\frac{5}{9}+o(1)\right) \frac{n^{2}}{2}$ contains a Hamiltonian cycle.

The result is (asymptotically) best possible:

Previous results

Theorem (Rödl, R., Szemerédi (2008))

For every $k \geq 2$ and large n, every n-vertex k-graph H with $\delta_{k-1}(H) \geq\left(\frac{1}{2}+o(1)\right) n$ contains a Hamiltonian cycle.

Theorem (Reiher, Rödl, R., Schacht, Szemerédi (2019))

For large n, every 3-graph H satisfying $\delta_{1}(H) \geq\left(\frac{5}{9}+o(1)\right) \frac{n^{2}}{2}$ contains a Hamiltonian cycle.

The result is (asymptotically) best possible:

Example

Main theorem

Theorem (Polcyn, Reiher, Rödl, R., Schacht, Schülke (2020))

For every $\alpha>0$, there exists an integer n_{0} such that every 4-uniform hypergraph H with $n \geq n_{0}$ vertices and minimum pair-degree $\delta_{2}(H) \geq\left(\frac{5}{9}+\alpha\right) \frac{n^{2}}{2}$ contains a Hamiltonian cycle.

Main theorem

Theorem (Polcyn, Reiher, Rödl, R., Schacht, Schülke (2020))

For every $\alpha>0$, there exists an integer n_{0} such that every 4-uniform hypergraph H with $n \geq n_{0}$ vertices and minimum
pair-degree $\delta_{2}(H) \geq\left(\frac{5}{9}+\alpha\right) \frac{n^{2}}{2}$ contains a Hamiltonian cycle.

Theorem (Reiher, Rödl, R., Schacht, Szemerédi (2019))

For large n, every 3-graph H satisfying $\delta_{1}(H) \geq\left(\frac{5}{9}+o(1)\right) \frac{n^{2}}{2}$ contains a Hamiltonian cycle.

Main theorem

Theorem (Polcyn, Reiher, Rödl, R., Schacht, Schülke (2020))

For every $\alpha>0$, there exists an integer n_{0} such that every 4-uniform hypergraph H with $n \geq n_{0}$ vertices and minimum pair-degree $\delta_{2}(H) \geq\left(\frac{5}{9}+\alpha\right) \frac{n^{2}}{2}$ contains a Hamiltonian cycle.

Example

Main theorem

Theorem (Polcyn, Reiher, Rödl, R., Schacht, Schülke (2020))

For every $\alpha>0$, there exists an integer n_{0} such that every 4-uniform hypergraph H with $n \geq n_{0}$ vertices and minimum pair-degree $\delta_{2}(H) \geq\left(\frac{5}{9}+\alpha\right) \frac{n^{2}}{2}$ contains a Hamiltonian cycle.

Main theorem

Theorem (Polcyn, Reiher, Rödl, R., Schacht, Schülke (2020))

For every $\alpha>0$, there exists an integer n_{0} such that every 4-uniform hypergraph H with $n \geq n_{0}$ vertices and minimum pair-degree $\delta_{2}(H) \geq\left(\frac{5}{9}+\alpha\right) \frac{n^{2}}{2}$ contains a Hamiltonian cycle.

Conjecture

For all $k \geq 3$ and large n, any k-graph H on n vertices with $\delta_{k-2}(H) \geq\left(\frac{5}{9}+o(1)\right) \frac{n^{2}}{2}$ contains a Hamiltonian cycle.

Main theorem

Theorem (Polcyn, Reiher, Rödl, R., Schacht, Schülke (2020))

For every $\alpha>0$, there exists an integer n_{0} such that every 4-uniform hypergraph H with $n \geq n_{0}$ vertices and minimum pair-degree $\delta_{2}(H) \geq\left(\frac{5}{9}+\alpha\right) \frac{n^{2}}{2}$ contains a Hamiltonian cycle.

Conjecture

For all $k \geq 3$ and large n, any k-graph H on n vertices with $\delta_{k-2}(H) \geq\left(\frac{5}{9}+o(1)\right) \frac{n^{2}}{2}$ contains a Hamiltonian cycle.

Remark

Proved this summer by Polcyn, Reiher, Rödl, and Schülke, and, independently, by R. Lang and N. Sanhueza-Matamala.

Proof of the main theorem

Proof of the main theorem

Proof of the main theorem

Proof of the main theorem

Proof of the main theorem

Proof of the main theorem

Connecting Lemma

Connecting Lemma

Definition

A 3-tuple $(x, y, z) \in V^{3}$ is called ζ-connectable in H if the set

$$
U_{x y z}=\left\{v \in V: x y z \in H_{v} \text { and } x y, y z \text { are " } \zeta \text {-connectable" in } H_{v}\right\}
$$

has size $\left|U_{x y z}\right| \geq \zeta n$.

Connecting Lemma

Definition

A 3-tuple $(x, y, z) \in V^{3}$ is called ζ-connectable in H if the set

$$
U_{x y z}=\left\{v \in V: x y z \in H_{v} \text { and } x y, y z \text { are " } \zeta \text {-connectable" in } H_{v}\right\}
$$

has size $\left|U_{x y z}\right| \geq \zeta n$.

Lemma (Connecting Lemma)

There is an integer L such that the following holds. If (a, b, c) and (x, y, z) are disjoint, connectable triples, then there are $\Omega\left(n^{L}\right) a b c-x y z-p a t h s$ in H with L inner vertices.

Proof Idea Connecting Lemma

Proof Idea Connecting Lemma

- Let S^{*} be the set of sextuples $\left(d_{1}, d_{2}, u, v, d_{3}, d_{4}\right)$ such that:

Proof Idea Connecting Lemma

- Let S^{*} be the set of sextuples $\left(d_{1}, d_{2}, u, v, d_{3}, d_{4}\right)$ such that:
(1) $u \in U_{a b c}$ and $v \in U_{x y z}$

Proof Idea Connecting Lemma

- Let S^{*} be the set of sextuples $\left(d_{1}, d_{2}, u, v, d_{3}, d_{4}\right)$ such that:
(1) $u \in U_{a b c}$ and $v \in U_{x y z}$
(2) $\left(d_{1}, d_{2}, d_{3}, d_{4}\right)$ is a path in $H_{u v}$

Proof Idea Connecting Lemma

- Let S^{*} be the set of sextuples $\left(d_{1}, d_{2}, u, v, d_{3}, d_{4}\right)$ such that:
(1) $u \in U_{a b c}$ and $v \in U_{x y z}$
(2) $\left(d_{1}, d_{2}, d_{3}, d_{4}\right)$ is a path in $H_{u v}$
(3) $d_{1} d_{2}$ is connectable in H_{u}

Proof Idea Connecting Lemma

- Let S^{*} be the set of sextuples $\left(d_{1}, d_{2}, u, v, d_{3}, d_{4}\right)$ such that:
(1) $u \in U_{a b c}$ and $v \in U_{x y z}$
(2) $\left(d_{1}, d_{2}, d_{3}, d_{4}\right)$ is a path in $H_{u v}$
(3) $d_{1} d_{2}$ is connectable in H_{u}
(4) $d_{3} d_{4}$ is connectable in H_{v}

Proof Idea Connecting Lemma

- Let S^{*} be the set of sextuples $\left(d_{1}, d_{2}, u, v, d_{3}, d_{4}\right)$ such that:
(1) $u \in U_{a b c}$ and $v \in U_{x y z}$
(2) $\left(d_{1}, d_{2}, d_{3}, d_{4}\right)$ is a path in $H_{u v}$
(3) $d_{1} d_{2}$ is connectable in H_{u}
(4) $d_{3} d_{4}$ is connectable in H_{v}
- Can show that $\left|S^{*}\right|=\Omega\left(n^{6}\right)$

Proof Idea Connecting Lemma

$u \in U_{a b c}, v \in U_{x y z},\left(d_{i}\right)$ 4-path in $H_{u v}, d_{1}, d_{2}$ conn. in H_{u}, d_{3}, d_{4} conn. in H_{v}

Absorbing Lemma

Absorbing Lemma

Lemma (Absorbing Lemma)

There exists an (absorbing) path $P_{A} \subseteq H-R$ that has the following properties:

Absorbing Lemma

Lemma (Absorbing Lemma)

There exists an (absorbing) path $P_{A} \subseteq H-R$ that has the following properties:
(i) $\left|V\left(P_{A}\right)\right|$ is small,

Absorbing Lemma

Lemma (Absorbing Lemma)

There exists an (absorbing) path $P_{A} \subseteq H-R$ that has the following properties:
(i) $\left|V\left(P_{A}\right)\right|$ is small,
(ii) the end-triples of P_{A} are connectable, and

Absorbing Lemma

Lemma (Absorbing Lemma)

There exists an (absorbing) path $P_{A} \subseteq H-R$ that has the following properties:
(i) $\left|V\left(P_{A}\right)\right|$ is small,
(ii) the end-triples of P_{A} are connectable, and
(iii) for every very small set $X \subseteq V$ with $|X| \equiv 0(\bmod 4)$, there is a path in H whose set of vertices is $V\left(P_{A}\right) \cup X$ and whose end-triples are the same as those of P_{A}.

Absorbing Lemma

Lemma (Absorbing Lemma)

There exists an (absorbing) path $P_{A} \subseteq H-R$ that has the following properties:
(i) $\left|V\left(P_{A}\right)\right|$ is small,
(ii) the end-triples of P_{A} are connectable, and
(iii) for every very small set $X \subseteq V$ with $|X| \equiv 0(\bmod 4)$, there is a path in H whose set of vertices is $V\left(P_{A}\right) \cup X$ and whose end-triples are the same as those of P_{A}.

Remark

The divisibility condition in (iii) can be dealt with easily by adjusting the Connecting Lemma.

Absorbers

Proof sketch Absorbing Path

- 4-partite, 4-graphs have Turán density $0 " \Rightarrow$ " for each 4 -set of vertices there are many absorbers

Proof sketch Absorbing Path

- 4-partite, 4-graphs have Turán density $0 " \Rightarrow$ " for each 4 -set of vertices there are many absorbers
- Random argument: There is a selection \mathcal{A} of 35 -vertex tuples such that:

Proof sketch Absorbing Path

- 4-partite, 4-graphs have Turán density $0 " \Rightarrow$ " for each 4 -set of vertices there are many absorbers
- Random argument: There is a selection \mathcal{A} of 35 -vertex tuples such that:
(i) For all $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \in V^{(4)}$, there are many absorbers in \mathcal{A},

Proof sketch Absorbing Path

- 4-partite, 4-graphs have Turán density $0 " \Rightarrow$ " for each 4 -set of vertices there are many absorbers
- Random argument: There is a selection \mathcal{A} of 35 -vertex tuples such that:
(i) For all $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \in V^{(4)}$, there are many absorbers in \mathcal{A},
(ii) All tuples in \mathcal{A} are disjoint,

Proof sketch Absorbing Path

- 4-partite, 4-graphs have Turán density $0 " \Rightarrow$ " for each 4 -set of vertices there are many absorbers
- Random argument: There is a selection \mathcal{A} of 35 -vertex tuples such that:
(i) For all $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \in V^{(4)}$, there are many absorbers in \mathcal{A},
(ii) All tuples in \mathcal{A} are disjoint,
(iii) $|\mathcal{A}|$ is small.

Proof sketch Absorbing Path

- 4-partite, 4-graphs have Turán density $0 " \Rightarrow$ " for each 4 -set of vertices there are many absorbers
- Random argument: There is a selection \mathcal{A} of 35 -vertex tuples such that:
(i) For all $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \in V^{(4)}$, there are many absorbers in \mathcal{A},
(ii) All tuples in \mathcal{A} are disjoint,
(iii) $|\mathcal{A}|$ is small.
- Connect all elements of \mathcal{A} into an absorbing path P_{A}

Covering Lemma

Covering Lemma

Lemma (Covering Lemma)

There exists a path $Q \subseteq H-P_{A}$ covering almost all vertices.

Covering Lemma

Lemma (Covering Lemma)

There exists a path $Q \subseteq H-P_{A}$ covering almost all vertices.

- OR, "equivalently", there exists a family of disjoint paths \mathcal{C} in $H-R-P_{A}$ covering almost all vertices.

Covering Lemma

Lemma (Covering Lemma)

There exists a path $Q \subseteq H-P_{A}$ covering almost all vertices.

- OR, "equivalently", there exists a family of disjoint paths \mathcal{C} in $H-R-P_{A}$ covering almost all vertices.

Remark

The proof doesn't rely on Szemerédi's regularity lemma.

Proof Idea Covering Lemma

- Consider a longest path Q with this structure (or, a largest family \mathcal{C} of disjoint M-paths):

Proof Idea Covering Lemma

- Consider a longest path Q with this structure (or, a largest family \mathcal{C} of disjoint M-paths):

- Call M-vertex sets blocks and 'chop off' the set U of leftover vertices into blocks (leaving, possibly a remainder); there are altogether $|\mathcal{C}|+\lfloor|U| / M\rfloor$ blocks

Proof Idea Covering Lemma

- Consider a longest path Q with this structure (or, a largest family \mathcal{C} of disjoint M-paths):

- Call M-vertex sets blocks and 'chop off' the set U of leftover vertices into blocks (leaving, possibly a remainder); there are altogether $|\mathcal{C}|+\lfloor|U| / M\rfloor$ blocks
- Consider a selection \mathcal{S} of m blocks (society)

Proof Idea Covering Lemma

- Consider a longest path Q with this structure (or, a largest family \mathcal{C} of disjoint M-paths):

- Call M-vertex sets blocks and 'chop off' the set U of leftover vertices into blocks (leaving, possibly a remainder); there are altogether $|\mathcal{C}|+\lfloor|U| / M\rfloor$ blocks
- Consider a selection \mathcal{S} of m blocks (society)
- For $u \in U$: if $\delta_{1}\left(H_{u}[S]\right) \geq\left(\frac{5}{9}+o(1)\right) \frac{|S|^{2}}{2}: \mathcal{S}$ is useful for u

Proof Idea Covering Lemma

- Consider a longest path Q with this structure (or, a largest family \mathcal{C} of disjoint M-paths):

- Call M-vertex sets blocks and 'chop off' the set U of leftover vertices into blocks (leaving, possibly a remainder); there are altogether $|\mathcal{C}|+\lfloor|U| / M\rfloor$ blocks
- Consider a selection \mathcal{S} of m blocks (society)
- For $u \in U$: if $\delta_{1}\left(H_{u}[S]\right) \geq\left(\frac{5}{9}+o(1)\right) \frac{|S|^{2}}{2}: \mathcal{S}$ is useful for u
- Random argument (weighted Janson ineq): there is a society that is useful for many $u \in U$

Proof Idea Covering Lemma

Augmenting:

Proof Idea Covering Lemma

Augmenting:

Creates $m+1$ new M-paths (from $\frac{3}{4}(M+1)$-paths by inserting $(M-3) / 4$ vts of U);

Proof Idea Covering Lemma

Augmenting:

Creates $m+1$ new M-paths (from $\frac{3}{4}(M+1)$-paths by inserting $(M-3) / 4$ vts of U); replacing in \mathcal{C} the m paths from \mathcal{S} by the new ones, yields a larger family \mathcal{C}^{\prime} - a contradiction !!!

Problem and Questions

Problem and Questions

Problem

Given integers $k>d>1$, determine the infimal real number α_{d}^{k} such that every k-uniform hypergraph H with minimum d-degree $\delta_{d}(H) \geq\left(\alpha_{d}^{k}+o(1)\right) \frac{n^{k-d}}{(k-d)!}$ contains a Hamiltonian cycle.

Problem and Questions

Problem

Given integers $k>d>1$, determine the infimal real number α_{d}^{k} such that every k-uniform hypergraph H with minimum d-degree $\delta_{d}(H) \geq\left(\alpha_{d}^{k}+o(1)\right) \frac{n^{k-d}}{(k-d)!}$ contains a Hamiltonian cycle.

We know that for all $k \geq 2: \alpha_{k-1}^{k}=1 / 2$,

Problem and Questions

Problem

Given integers $k>d>1$, determine the infimal real number α_{d}^{k} such that every k-uniform hypergraph H with minimum d-degree $\delta_{d}(H) \geq\left(\alpha_{d}^{k}+o(1)\right) \frac{n^{k-d}}{(k-d)!}$ contains a Hamiltonian cycle.

We know that for all $k \geq 2: \alpha_{k-1}^{k}=1 / 2$, for all $k \geq 3: \alpha_{k-2}^{k}=5 / 9$.

Problem and Questions

Problem

Given integers $k>d>1$, determine the infimal real number α_{d}^{k} such that every k-uniform hypergraph H with minimum d-degree $\delta_{d}(H) \geq\left(\alpha_{d}^{k}+o(1)\right) \frac{n^{k-d}}{(k-d)!}$ contains a Hamiltonian cycle.

We know that for all $k \geq 2: \alpha_{k-1}^{k}=1 / 2$, for all $k \geq 3: \alpha_{k-2}^{k}=5 / 9$. The lower bound for the latter by a general construction by J. Han and Y. Zhao.

Problem and Questions

Problem

Given integers $k>d>1$, determine the infimal real number α_{d}^{k} such that every k-uniform hypergraph H with minimum d-degree $\delta_{d}(H) \geq\left(\alpha_{d}^{k}+o(1)\right) \frac{n^{k-d}}{(k-d)!}$ contains a Hamiltonian cycle.

We know that for all $k \geq 2: \alpha_{k-1}^{k}=1 / 2$, for all $k \geq 3: \alpha_{k-2}^{k}=5 / 9$. The lower bound for the latter by a general construction by J. Han and Y. Zhao.

Question

Given d, is there a constant β_{d} such that $\alpha_{k-d}^{d}=\beta_{d}$ for all $k \geq d+1$?

Problem and Questions

Problem

Given integers $k>d>1$, determine the infimal real number α_{d}^{k} such that every k-uniform hypergraph H with minimum d-degree $\delta_{d}(H) \geq\left(\alpha_{d}^{k}+o(1)\right) \frac{n^{k-d}}{(k-d)!}$ contains a Hamiltonian cycle.

We know that for all $k \geq 2: \alpha_{k-1}^{k}=1 / 2$, for all $k \geq 3: \alpha_{k-2}^{k}=5 / 9$.
The lower bound for the latter by a general construction by J. Han and Y. Zhao.

Question

Given d, is there a constant β_{d} such that $\alpha_{k-d}^{d}=\beta_{d}$ for all $k \geq d+1$?
We know $\beta_{1}=/ 2$ and $\beta_{2}=5 / 9$.

Problem and Questions

Problem

Given integers $k>d>1$, determine the infimal real number α_{d}^{k} such that every k-uniform hypergraph H with minimum d-degree $\delta_{d}(H) \geq\left(\alpha_{d}^{k}+o(1)\right) \frac{n^{k-d}}{(k-d)!}$ contains a Hamiltonian cycle.

We know that for all $k \geq 2: \alpha_{k-1}^{k}=1 / 2$, for all $k \geq 3: \alpha_{k-2}^{k}=5 / 9$.
The lower bound for the latter by a general construction by J. Han and Y. Zhao.

Question

Given d, is there a constant β_{d} such that $\alpha_{k-d}^{d}=\beta_{d}$ for all $k \geq d+1$?
We know $\beta_{1}=/ 2$ and $\beta_{2}=5 / 9$. Assuming the answer is yes, the Han-Zhao construction prompts us then to ask the following question:

Problem and Questions

Problem

Given integers $k>d>1$, determine the infimal real number α_{d}^{k} such that every k-uniform hypergraph H with minimum d-degree $\delta_{d}(H) \geq\left(\alpha_{d}^{k}+o(1)\right) \frac{n^{k-d}}{(k-d)!}$ contains a Hamiltonian cycle.

We know that for all $k \geq 2$: $\alpha_{k-1}^{k}=1 / 2$, for all $k \geq 3$: $\alpha_{k-2}^{k}=5 / 9$.
The lower bound for the latter by a general construction by J. Han and Y. Zhao.

Question

Given d, is there a constant β_{d} such that $\alpha_{k-d}^{d}=\beta_{d}$ for all $k \geq d+1$?
We know $\beta_{1}=/ 2$ and $\beta_{2}=5 / 9$. Assuming the answer is yes, the Han-Zhao construction prompts us then to ask the following question:

Question

Is $\beta_{3}=5 / 8$?

THANK YOU FOR YOUR ATTENTION !!!

