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Theorem (Dirac 1952)

Let G be a graph on n > 3 vertices with 6(G) > %n, then G contains a
Hamiltonian cycle.

Goal: Generalization to hypergraphs

Definition (Paths and cycles)

o k > 2, k-uniform hypergraph (k-graph): Pair (V| E), with vertex
set VV and edge set E C V(K :={e C V : |e| = k}

o (tight) path (of length ¢ — k +1): {x1,...,x/} C V, every
consecutive k-tuple of vertices {x;, Xi11, - ., Xitk—1}
with i € [( — k+1].

o (tight) cycle (of length £): {x1,...,x} C V, every
consecutive k-tuple of vertices {x;, Xi11, ..., Xitk—1} wWith i € Z/nZ
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Definition (Different degrees)
o For k-graph H=(V,E) and S C V: the degree of S in H dy(S) is
the number of edges e € H with S C e.

o For d € [k — 1], the minimum d-degree 04(H) is the smallest value
of dy(S) taken over all d-element subsets S C V.

o dy({x,y}) is the pair-degree of a vertex pair {x,y}: the number of
edges in H containing {x,y}.

o 83(H) is the minimum pair-degree of a hypergraph H: the smallest
pair-degree taken over all vertex pairs in H.
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Theorem (Rédl, R., Szemerédi (2008))

For every k > 2 and large n, every n-vertex k-graph H
with 5x—1(H) > (1 + o(1)) n contains a Hamiltonian cycle.

A\

Theorem (Rédl, R., Szemerédi (2011))

For large n, every n-vertex 3-graph H with 6,(H) > |n/2] contains a
Hamiltonian cycle.
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Previous results

Theorem (Rédl, R., Szemerédi (2008))

For every k > 2 and large n, every n-vertex k-graph H
with 6x—1(H) > (% + o(1)) n contains a Hamiltonian cycle.

Theorem (Reiher, Rédl, R., Schacht, Szemerédi (2019))

n2

For large n, every 3-graph H satisfying 61(H) > (3 + o(1)) % contains a
Hamiltonian cycle.

The result is (asymptotically) best possible:

Example

%57 ]
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Main theorem

Theorem (Polcyn, Reiher, Rédl, R., Schacht, Schiilke (2020))

For every a > 0, there exists an integer ng such that every 4-uniform
hypergraph H with n > ng vertices and minimum

2
pair-degree 6,(H) > (3 4+ a) % contains a Hamiltonian cycle.

| \

Conjecture

For all k > 3 and large n, any k-graph H on n vertices
2
with 6x—2(H) > (3 + o(1)) % contains a Hamiltonian cycle.

Remark

| \

Proved this summer by Polcyn, Reiher, Rédl, and Schiilke, and,
independently, by R. Lang and N. Sanhueza-Matamala.

N,
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A 3-tuple (x,y,z) € V3 is called (-connectable in H if the set
Uy, ={v €V :xyz € H, and xy, yz are "(-connectable" in H,}

has size |Uyy,| > ¢n.
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A 3-tuple (x,y,z) € V3 is called (-connectable in H if the set

Uy, ={v €V :xyz € H, and xy, yz are "(-connectable" in H,}

has size |Uyy,| > ¢n.

A\

Lemma (Connecting Lemma)

There is an integer L such that the following holds. If (a, b, c)
and (x,y, z) are disjoint, connectable triples, then there
are Q(nt) abc — xyz-paths in H with L inner vertices.

A\
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L
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Proof Idea Connecting Lemma

o Let S* be the set of sextuples (dy, da, u, v, ds, dy) such that:
(1) u € Uape and v € Uyy,

(2) (d17d27d37d4) is a path in H,,

(3) did, is connectable in H,

(4) dsds is connectable in H,

C

o Can show that |S*| = Q(n®)
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Proof Idea Connecting Lemma

u € Uape, v € Uy, (d;) 4-path in H,y, di, d> conn. in H,, d3, dy conn. in H,
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Lemma (Absorbing Lemma)

There exists an (absorbing) path Pa C H — R that has the following
properties:

(1) [V(Pa)| is small,

(i) the end-triples of P4 are connectable, and

(iii) for every very small set X C V with |X| =0 (mod 4), there is a
path in H whose set of vertices is V(Pa) U X and whose end-triples
are the same as those of Py.
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Lemma (Absorbing Lemma)

There exists an (absorbing) path Pa C H — R that has the following
properties:
(1) [V(Pa)| is small,
(i) the end-triples of P4 are connectable, and
(iii) for every very small set X C V with |X| =0 (mod 4), there is a

path in H whose set of vertices is V(Pa) U X and whose end-triples
are the same as those of Py.

Remark

| \

The divisibility condition in (/i) can be dealt with easily by adjusting the
Connecting Lemma.

16 /23
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Proof sketch Absorbing Path

o 4-partite, 4-graphs have Turan density 0 "=-" for each 4-set of
vertices there are many absorbers

o Random argument: There is a selection A of 35-vertex tuples such
that:
(i) For all {vi, vy, vs3,vs} € V() there are many absorbers in A,
(i) All tuples in A are disjoint,
(iii) | Al is small.

o Connect all elements of A into an absorbing path Pa
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Covering Lemma

Lemma (Covering Lemma)

There exists a path @ C H — P4 covering almost all vertices.

o OR, "equivalently”, there exists a family of disjoint paths C in
H — R — Px covering almost all vertices.

The proof doesn't rely on Szemerédi's regularity lemma. \
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Proof |dea Covering Lemma

o Consider a longest path Q with this structure (or, a largest family C
of disjoint M-paths):

%’\pat’f[;s of{l

o Call M-vertex sets blocks and ‘chop off' the set U of leftover
vertices into blocks (leaving, possibly a remainder); there are
altogether |C| + ||U|/M] blocks

o Consider a selection S of m blocks (society)
o For u € U: if 61(HJ[S]) > (3 + 0(1))%: S is useful for u

o Random argument (weighted Janson ineq): there is a society that is
useful for many u € U
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Covering Lemma
[e]e] J

Proof |dea Covering Lemma

Augmenting:

Uspec

L

Creates m + 1 new M-paths (from 2(M + 1)-paths by inserting
(M —3)/4 vts of U); replacing in C the m paths from S by the new
ones, yields a larger family C' — a contradiction !!!
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Given integers k > d > 1, determine the infimal real number o such
that every k-uniform hypergraph H with minimum
d-degree 64(H) > (a% + o(1)) % contains a Hamiltonian cycle.

We know that for all kK > 2: af_l =1/2, for all k > 3: o/,j_2 =5/9.
The lower bound for the latter by a general construction by J. Han and
Y. Zhao.

Given d, is there a constant B4 such that affd = Bq forall k>d+17?

We know (1 = /2 and 8, = 5/9. Assuming the answer is yes, the
Han-Zhao construction prompts us then to ask the following question:

Is B3 =5/87
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