On Vizing's edge-colouring question

Marthe Bonamy

July 28, 2020

Edge colouring

 χ' : Minimum number of colors to ensure that

 χ' : Minimum number of colors to ensure that

 Δ : Maximum degree of the graph.

 $\Delta \leq \chi'$

Theorem (Vizing '64)

For any graph G, $\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$.

Theorem (Vizing '64)

For any graph G, $\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$.

Theorem (Vizing '64)

For any graph G, $\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$.

Theorem (Vizing '64)

For any graph G, $\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$.

Theorem (Vizing '64)

For any graph G, $\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$.

Theorem (Vizing '64)

For any graph G, $\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$.

For any graph G, for any proper edge colouring α of G, there is a proper $(\Delta(G) + 1)$ -edge colouring β of G such that α and β are Kempe-equivalent.

For any graph G, for any proper edge colouring α of G, there is a proper $(\Delta(G) + 1)$ -edge colouring β of G such that α and β are Kempe-equivalent.

Conjecture (Vizing '65)

For any graph G, for any proper edge colouring α of G, there is a proper $\chi'(G)$ -edge colouring β of G such that α and β are Kempe-equivalent.

For any graph G, for any proper edge colouring α of G, there is a proper $(\Delta(G) + 1)$ -edge colouring β of G such that α and β are Kempe-equivalent.

Theorem (Misra Gries '92 (Inspired from the proof))

For any simple graph G = (V, E), a $(\Delta + 1)$ -edge-coloring can be found in $\mathcal{O}(|V| \times |E|)$.

Conjecture (Vizing '65)

For any graph G, for any proper edge colouring α of G, there is a proper $\chi'(G)$ -edge colouring β of G such that α and β are Kempe-equivalent.

For any graph G, for any proper edge colouring α of G, there is a proper $(\Delta(G) + 1)$ -edge colouring β of G such that α and β are Kempe-equivalent.

Theorem (Misra Gries '92 (Inspired from the proof))

For any simple graph G = (V, E), a $(\Delta + 1)$ -edge-coloring can be found in $\mathcal{O}(|V| \times |E|)$.

Conjecture (Vizing '65)

For any graph G, for any proper edge colouring α of G, there is a proper $\chi'(G)$ -edge colouring β of G such that α and β are Kempe-equivalent.

Theorem (Holyer '81)

It is NP-complete to compute χ' .

For any graph G, for any proper edge colouring α of G, there is a proper $\chi'(G)$ -edge colouring β of G such that α and β are Kempe-equivalent.

For any graph G, for any proper edge colouring α of G, there is a proper $\chi'(G)$ -edge colouring β of G such that α and β are Kempe-equivalent.

Only interesting for $\chi'(G) = \Delta(G)$.

For any graph G, for any proper edge colouring α of G, there is a proper $\chi'(G)$ -edge colouring β of G such that α and β are Kempe-equivalent.

Only interesting for $\chi'(G) = \Delta(G)$.

Conjecture (Mohar '06)

For any graph G, for any two $(\Delta(G) + 2)$ -edge colourings α and β of G, they are Kempe-equivalent.

For any graph G, for any proper edge colouring α of G, there is a proper $\chi'(G)$ -edge colouring β of G such that α and β are Kempe-equivalent.

Only interesting for $\chi'(G) = \Delta(G)$.

Conjecture (Mohar '06)

For any graph G, for any two $(\Delta(G) + 2)$ -edge colourings α and β of G, they are Kempe-equivalent.

True if $\chi'(G) = \Delta(G)$.

For any graph G, for any proper edge colouring α of G, there is a proper $\chi'(G)$ -edge colouring β of G such that α and β are Kempe-equivalent.

Only interesting for $\chi'(G) = \Delta(G)$.

Conjecture (Mohar '06)

For any graph G, for any two $(\Delta(G) + 2)$ -edge colourings α and β of G, they are Kempe-equivalent.

True if $\chi'(G) = \Delta(G)$.

(Vizing's conjecture) \Rightarrow (Mohar's conjecture): induction on $\Delta(G)$.

Vizing's conjecture is true for $\Delta = 3$.

Vizing's conjecture is true for $\Delta = 3$.

Theorem (Asratian, Casselgren '16)

Vizing's conjecture is true for $\Delta = 4$.

Vizing's conjecture is true for $\Delta = 3$.

Theorem (Asratian, Casselgren '16)

Vizing's conjecture is true for $\Delta = 4$.

Theorem (B., Defrain, Klimošová, Lagoutte, Narboni '20)

Vizing's conjecture is true for triangle-free graphs.

Vizing's conjecture is true for $\Delta = 3$.

Theorem (Asratian, Casselgren '16)

Vizing's conjecture is true for $\Delta = 4$.

Theorem (B., Defrain, Klimošová, Lagoutte, Narboni '20)

Vizing's conjecture is true for triangle-free graphs.

Theorem (B., Defrain, Klimošová, Lagoutte, Narboni '20)

For any triangle-free graph, all $(\chi' + 1)$ -edge-colourings are Kempe-equivalent.

• By induction on $\chi'(G)$.

- By induction on $\chi'(G)$.
- It suffices to consider $\chi'(G)$ -regular graphs.

- By induction on $\chi'(G)$.
- It suffices to consider $\chi'(G)$ -regular graphs.
- Consider a target χ'(G)-edge-colouring α, and M one of its color classes (M is a perfect matching).

- By induction on $\chi'(G)$.
- It suffices to consider $\chi'(G)$ -regular graphs.
- Consider a target χ'(G)-edge-colouring α, and M one of its color classes (M is a perfect matching).
- Goal: make *M* monochromatic (say with colour 1).

- By induction on $\chi'(G)$.
- It suffices to consider $\chi'(G)$ -regular graphs.
- Consider a target χ'(G)-edge-colouring α, and M one of its color classes (M is a perfect matching).
- Goal: make *M* monochromatic (say with colour 1).
- Good ($\in M$, coloured 1), bad ($\in M$, not coloured 1), ugly ($\notin M$, coloured 1) edges.

Fan-like tools

Fan-like tools

Fan-like tools

Comet: ☺ (sort of)

Then X_v in $\overrightarrow{D_w}$ is a cycle.

Then X_v in $\overrightarrow{D_w}$ is a cycle. X_w in $\overrightarrow{D_v}$ is also a cycle.

Then X_v in $\overrightarrow{D_w}$ is a cycle. X_w in $\overrightarrow{D_v}$ is also a cycle.

Two cycles $\Rightarrow \bigoplus$ (unless there is a triangle vwx with χ at x).

Conclusion

Danke schön!