On Vizing's edge-colouring question

Marthe Bonamy

July 28, 2020

Edge colouring

Edge colouring

χ^{\prime} : Minimum number of colors to ensure that

Edge colouring

χ^{\prime} : Minimum number of colors to ensure that

Δ : Maximum degree of the graph.

$$
\Delta \leq \chi^{\prime}
$$

Vizing's theorem and Kempe equivalence

Theorem (Vizing '64)

For any graph $G, \Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+1$.

Vizing's theorem and Kempe equivalence

Theorem (Vizing '64)

For any graph $G, \Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+1$.
Proof through "Kempe changes".

Vizing's theorem and Kempe equivalence

Theorem (Vizing '64)

For any graph $G, \Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+1$.
Proof through "Kempe changes".

Vizing's theorem and Kempe equivalence

Theorem (Vizing '64)

For any graph $G, \Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+1$.
Proof through "Kempe changes".

Vizing's theorem and Kempe equivalence

Theorem (Vizing '64)

For any graph $G, \Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+1$.
Proof through "Kempe changes".

Vizing's theorem and Kempe equivalence

Theorem (Vizing '64)

For any graph $G, \Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+1$.
Proof through "Kempe changes".

Vizing's theorem, revisited

Theorem (Vizing '64)

For any graph G, for any proper edge colouring α of G, there is a $\operatorname{proper}(\Delta(G)+1)$-edge colouring β of G such that α and β are Kempe-equivalent.

Vizing's theorem, revisited

Theorem (Vizing '64)

For any graph G, for any proper edge colouring α of G, there is a $\operatorname{proper}(\Delta(G)+1)$-edge colouring β of G such that α and β are Kempe-equivalent.

Conjecture (Vizing '65)

For any graph G, for any proper edge colouring α of G, there is a proper $\chi^{\prime}(G)$-edge colouring β of G such that α and β are Kempe-equivalent.

Vizing's theorem, revisited

Theorem (Vizing '64)

For any graph G, for any proper edge colouring α of G, there is a $\operatorname{proper}(\Delta(G)+1)$-edge colouring β of G such that α and β are Kempe-equivalent.

Theorem (Misra Gries '92 (Inspired from the proof))

For any simple graph $G=(V, E)$, a $(\Delta+1)$-edge-coloring can be found in $\mathcal{O}(|V| \times|E|)$.

Conjecture (Vizing '65)

For any graph G, for any proper edge colouring α of G, there is a proper $\chi^{\prime}(G)$-edge colouring β of G such that α and β are Kempe-equivalent.

Vizing's theorem, revisited

Theorem (Vizing '64)

For any graph G, for any proper edge colouring α of G, there is a $\operatorname{proper}(\Delta(G)+1)$-edge colouring β of G such that α and β are Kempe-equivalent.

Theorem (Misra Gries '92 (Inspired from the proof))

For any simple graph $G=(V, E)$, a $(\Delta+1)$-edge-coloring can be found in $\mathcal{O}(|V| \times|E|)$.

Conjecture (Vizing '65)

For any graph G, for any proper edge colouring α of G, there is a proper $\chi^{\prime}(G)$-edge colouring β of G such that α and β are Kempe-equivalent.

Theorem (Holyer '81)

It is NP-complete to compute χ^{\prime}.

Mohar's conjecture

Conjecture (Vizing '65)

For any graph G, for any proper edge colouring α of G, there is a proper $\chi^{\prime}(G)$-edge colouring β of G such that α and β are Kempe-equivalent.

Mohar's conjecture

Conjecture (Vizing '65)

For any graph G, for any proper edge colouring α of G, there is a proper $\chi^{\prime}(G)$-edge colouring β of G such that α and β are Kempe-equivalent.

Only interesting for $\chi^{\prime}(G)=\Delta(G)$.

Mohar's conjecture

Conjecture (Vizing '65)

For any graph G, for any proper edge colouring α of G, there is a proper $\chi^{\prime}(G)$-edge colouring β of G such that α and β are Kempe-equivalent.

Only interesting for $\chi^{\prime}(G)=\Delta(G)$.

Conjecture (Mohar '06)

For any graph G, for any two $(\Delta(G)+2)$-edge colourings α and β of G, they are Kempe-equivalent.

Mohar's conjecture

Conjecture (Vizing '65)

For any graph G, for any proper edge colouring α of G, there is a proper $\chi^{\prime}(G)$-edge colouring β of G such that α and β are Kempe-equivalent.

Only interesting for $\chi^{\prime}(G)=\Delta(G)$.

Conjecture (Mohar '06)

For any graph G, for any two $(\Delta(G)+2)$-edge colourings α and β of G, they are Kempe-equivalent.

True if $\chi^{\prime}(G)=\Delta(G)$.

Mohar's conjecture

Conjecture (Vizing '65)

For any graph G, for any proper edge colouring α of G, there is a proper $\chi^{\prime}(G)$-edge colouring β of G such that α and β are Kempe-equivalent.

Only interesting for $\chi^{\prime}(G)=\Delta(G)$.

Conjecture (Mohar '06)

For any graph G, for any two $(\Delta(G)+2)$-edge colourings α and β of G, they are Kempe-equivalent.

True if $\chi^{\prime}(G)=\Delta(G)$.
(Vizing's conjecture) \Rightarrow (Mohar's conjecture): induction on $\Delta(G)$.

Small Delta

Theorem (McDonald, Mohar, Scheide '10)
 Vizing's conjecture is true for $\Delta=3$.

Small Delta

Theorem (McDonald, Mohar, Scheide '10)
 Vizing's conjecture is true for $\Delta=3$.

Theorem (Asratian, Casselgren '16) Vizing's conjecture is true for $\Delta=4$.

Small Delta

Theorem (McDonald, Mohar, Scheide '10)
 Vizing's conjecture is true for $\Delta=3$.

Theorem (Asratian, Casselgren '16)
 Vizing's conjecture is true for $\Delta=4$.

Theorem (B., Defrain, Klimošová, Lagoutte, Narboni '20)

Vizing's conjecture is true for triangle-free graphs.

Small Delta

Theorem (McDonald, Mohar, Scheide '10)
 Vizing's conjecture is true for $\Delta=3$.

Theorem (Asratian, Casselgren '16)

Vizing's conjecture is true for $\Delta=4$.

Theorem (B., Defrain, Klimošová, Lagoutte, Narboni '20)

Vizing's conjecture is true for triangle-free graphs.

Theorem (B., Defrain, Klimošová, Lagoutte, Narboni '20)

For any triangle-free graph, all $\left(\chi^{\prime}+1\right)$-edge-colourings are Kempe-equivalent.

General structure

- By induction on $\chi^{\prime}(G)$.

General structure

- By induction on $\chi^{\prime}(G)$.
- It suffices to consider $\chi^{\prime}(G)$-regular graphs.

General structure

- By induction on $\chi^{\prime}(G)$.
- It suffices to consider $\chi^{\prime}(G)$-regular graphs.
- Consider a target $\chi^{\prime}(G)$-edge-colouring α, and M one of its color classes (M is a perfect matching).

General structure

- By induction on $\chi^{\prime}(G)$.
- It suffices to consider $\chi^{\prime}(G)$-regular graphs.
- Consider a target $\chi^{\prime}(G)$-edge-colouring α, and M one of its color classes (M is a perfect matching).
- Goal: make M monochromatic (say with colour 1).

General structure

- By induction on $\chi^{\prime}(G)$.
- It suffices to consider $\chi^{\prime}(G)$-regular graphs.
- Consider a target $\chi^{\prime}(G)$-edge-colouring α, and M one of its color classes (M is a perfect matching).
- Goal: make M monochromatic (say with colour 1).
- Good ($\in M$, coloured 1), bad ($\in M$, not coloured 1), ugly ($\notin M$, coloured 1) edges.

Fan-like tools

Fan-like tools

$\overrightarrow{D_{v}}: v y \rightarrow v z$ if $v z$ is coloured with the colour missing at y.

Fan-like tools

$\overrightarrow{D_{v}}: v y \rightarrow v z$ if $v z$ is coloured with the colour missing at y.

X_{u} : sequence of vertices of $\overrightarrow{D_{v}}$ reached from $u v$.

- Path: ©

Fan-like tools

$\overrightarrow{D_{v}}: v y \rightarrow v z$ if $v z$ is coloured with the colour missing at y.

X_{u} : sequence of vertices of $\overrightarrow{D_{v}}$ reached from $u v$.

- Path: ©
- Cycle: :)

Fan-like tools

$\overrightarrow{D_{v}}: v y \rightarrow v z$ if $v z$ is coloured with the colour missing at y.

X_{u} : sequence of vertices of $\overrightarrow{D_{v}}$ reached from $u v$.

- Path: ©
- Cycle: :
- Comet: Θ (sort of)

Back to the general picture

We can argue the existence of:

Back to the general picture

We can argue the existence of:

Then X_{v} in $\overrightarrow{D_{w}}$ is a cycle.

Back to the general picture

We can argue the existence of:

Then X_{v} in $\overrightarrow{D_{w}}$ is a cycle. X_{w} in $\overrightarrow{D_{v}}$ is also a cycle.

Back to the general picture

We can argue the existence of:

Then X_{v} in $\overrightarrow{D_{w}}$ is a cycle. X_{w} in $\overrightarrow{D_{v}}$ is also a cycle.

Two cycles \Rightarrow (unless there is a triangle $v w x$ with \mathbb{X} at x.

Conclusion

Conclusion

Danke schön!

