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Long ago . . .

Everything is a graph - no loops or multiple edges

H is a minor of G written H ≺ G if H can be obtained from G by
a sequence of deletions and edge-contractions

Mader (60s) asked: how many edges in G guarantee Kt ≺ G?

Mader: ∃ c(t) such that e(G ) ≥ c(t)|G | implies Kt ≺ G

c(t) ≤ 2t−3 (Mader 67), c(t) ≤ 8t log2 t (Mader 68)

G = Kt−2 + Kn−t+2 shows c(t) ≥ t − 2

c(3) = 1 c(4) = 2 c(5) = 3 c(6) = 4 c(7) = 5 . . . (Mader 68)

c(t) ≥ c t
√

log t (Bollobás+Catlin+Erdős 80)



Why
√
log?

Let G = G (n, p) be random. Is Ks ≺ G? Let ` = n/s.

Pr{two blobs have no edge between} = (1− p)`
2

If we put ` =
√

(1− ε) log s/ log(1− p) this is s−1+ε so

Pr{Ks ≺ G} ≤ number of blobbings× Pr{blobbing is ok}

≤ sn × (1− s−1+ε)

(
s
2

)
≤ exp{s` log s − s−1+ε

(
s
2

)
} = o(1)



Why
√
log?

Let G = G (n, p) be random. Is Ks ≺ G? Let ` = n/s.

Pr{two blobs have no edge between} = (1− p)`
2

If we put ` =
√

(1− ε) log s/ log(1− p) this is s−1+ε so

Pr{Ks ≺ G} ≤ number of blobbings× Pr{blobbing is ok}

≤ sn × (1− s−1+ε)

(
s
2

)
≤ exp{s` log s − s−1+ε

(
s
2

)
} = o(1)



The value of c(t)

c(t) ≥ 0.319 t
√

log t (Bollobás+Catlin+Erdős 80)

where 0.319 . . . = maxp>0
p/2√

log 1/(1−p)
(at p = 0.715 . . .)

c(t) = Θ(t
√

log t) (Kostochka 82, T 84)

c(t) = (0.319 + o(1)) t
√

log t (T 01)

Extremal graphs are (more or less) disjoint unions of random-like
graphs of the optimal size+density (Myers 02)
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Incomplete minors
OK it’s known that c(t) = (0.319 + o(1)) t

√
log t

Given H, define c(H) by e(G ) ≥ c(H)|G | implies H ≺ G

Let H have t verts and ave degree d . Clearly c(H) ≤ c(t).

Define γ(H) = minw
1
t

∑
u∈H w(u), where w : V (H)→ R+ and∑

uv∈E(H)

e−w(u)w(v) ≤ t

Note γ(H) ≤
√

log d

If d ≥ tε then c(t) = (0.319 + o(1)) t γ(H) (Myers+T 05)

If d ≥ tε then γ(H) ≈
√

log d for almost all H
If d ≥ tε then γ(H) ≈

√
log d all regular H

γ(Kβt,(1−β)t) ∼ 2
√
β(1− β) log t
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Sparse minors

If d ≥ tε then c(H) ≤ (0.319 + o(1)) t
√

log d (Myers+T 05)

What if d smaller, say d = log t, eg if H = hypercube?

Pr{H ≺ G (n, p)} ≤ number of blobbings× Pr{blobbing is ok}

d small =⇒ Pr{blobbing is ok} is large =⇒ first term dominates

In fact
d ≤ log t =⇒ G (t, 1/2) contains a spanning H (Alon+Füredi 92)
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Sparse examples

c(K2,t) = t+1
2 Myers 03 large t

Chudnovsky+Reed+Seymour 11, all t

c(Ks,t) = (12 + o(1))t Kühn+Osthus 05, large t

c(Ks,t) = t+3s
2 + O(

√
s) Kostochka+Prince 07, large t

c(Ks,t) ≤ t+6s log s
2

true for s ≤ ct/ log t
false for s > Ct log t Kostochka+Prince 10

c(hypercube) = O(t) (Hendrey+Norin+Wood 19+)



Get on with it
If d ≥ tε then c(H) ≤ (0.319 + o(1)) t

√
log d (Myers+T 05)

For all H, c(H) ≤ 3.895 t
√

log d (Reed+Wood 15)

Theorem (Wales+T 20+)

Given ε > 0 there exists d0 such that, for all d ≥ d0:
all graphs H of order t and average degree d > d0 satisfy

c(H) ≤ (0.319 + ε) t
√

log d

Theorem (Norin+Reed+T+Wood 20)

Given ε > 0 there exists d0 such that, for all d ≥ d0:
for all t ≥ d, almost all graphs H of order t and average degree d
satisfy

c(H) ≥ (0.319− ε) t
√

log d



Get on with it
If d ≥ tε then c(H) ≤ (0.319 + o(1)) t

√
log d (Myers+T 05)

For all H, c(H) ≤ 3.895 t
√

log d (Reed+Wood 15)

Theorem (Wales+T 20+)

Given ε > 0 there exists d0 such that, for all d ≥ d0:
all graphs H of order t and average degree d > d0 satisfy

c(H) ≤ (0.319 + ε) t
√

log d

Theorem (Norin+Reed+T+Wood 20)

Given ε > 0 there exists d0 such that, for all d ≥ d0:
for all t ≥ d, almost all graphs H of order t and average degree d
satisfy

c(H) ≥ (0.319− ε) t
√

log d



The lower bound

G is a blowup of a tiny random graph (c.f. Fox 11)

Take G0 = G (d , 0.715 . . .)

Form G by blowing up vertices of G0

so that G has average degree 0.319t
√

log d

Show H 6≺ G for almost all H 〈insert maths here〉

Is this a contradiction in maths?
Ie G is extremal so it should be pseudo-random
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The upper bound

Lemma (Wales+T)

Given ε > 0 there exists d0 such that, for all d ≥ d0:
if G is a graph of density at least p + ε, with κ(G ) ≥ ε|G | and
|G | ≥ t

√
log1/(1−p) d, then G � H for all H order t and ave deg d.

Proof.
a) “Degree random” partition G : t parts Wi , |Wi | = ` = |G |/t

b) Randomly map V (H) to {W1, . . . ,Wt}.
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Thanks for your attention


