The extremal function for sparse minors

Andrew Thomason

Erfurt (sort of) 28th July 2020

Long ago . . .

Everything is a graph - no loops or multiple edges

H is a *minor* of *G* written $H \prec G$ if *H* can be obtained from *G* by a sequence of deletions and edge-contractions

Mader (60s) asked: how many edges in
$$G$$
 guarantee $K_t \prec G$?
Mader: $\exists c(t)$ such that $e(G) \ge c(t)|G|$ implies $K_t \prec G$
 $c(t) \le 2^{t-3}$ (Mader 67), $c(t) \le 8t \log_2 t$ (Mader 68)

$$G = K_{t-2} + \overline{K}_{n-t+2} \text{ shows } c(t) \ge t-2$$

$$c(3) = 1 \quad c(4) = 2 \quad c(5) = 3 \quad c(6) = 4 \quad c(7) = 5 \quad \dots \text{ (Mader 68)}$$

 $c(t) \ge c t \sqrt{\log t}$ (Bollobás+Catlin+Erdős 80)

Why $\sqrt{\log}$? Let G = G(n, p) be random. Is $K_s \prec G$? Let $\ell = n/s$.

 $\Pr\{\text{two blobs have no edge between}\} = (1 - p)^{\ell^2}$

Why $\sqrt{\log}$? Let G = G(n, p) be random. Is $K_s \prec G$? Let $\ell = n/s$.

 $\Pr\{\text{two blobs have no edge between}\} = (1 - p)^{\ell^2}$

If we put $\ell = \sqrt{(1-\epsilon)\log s/\log(1-p)}$ this is $s^{-1+\epsilon}$ so $\Pr\{K_s \prec G\} \leq \text{number of blobbings} \times \Pr\{\text{blobbing is ok}\}$ $\leq s^n \times (1-s^{-1+\epsilon})^{\binom{s}{2}}$ $\leq \exp\{s\ell \log s - s^{-1+\epsilon}\binom{s}{2}\} = o(1)$

The value of c(t)

 $c(t) \ge 0.319 t \sqrt{\log t} \quad (\text{Bollobás+Catlin+Erdős 80})$ where $0.319 \ldots = \max_{p>0} \frac{p/2}{\sqrt{\log 1/(1-p)}} \quad (\text{at } p = 0.715 \ldots)$

The value of c(t)

 $c(t) \ge 0.319 t \sqrt{\log t}$ (Bollobás+Catlin+Erdős 80)

where
$$0.319... = \max_{p>0} \frac{p/2}{\sqrt{\log 1/(1-p)}}$$
 (at $p = 0.715...$)

$$c(t) = \Theta(t\sqrt{\log t})$$
 (Kostochka 82, T 84)

$$c(t) = (0.319 + o(1)) t \sqrt{\log t}$$
 (T 01)

Extremal graphs are (more or less) disjoint unions of random-like graphs of the optimal size+density (Myers 02)

Incomplete minors

OK it's known that $c(t) = (0.319 + o(1)) t \sqrt{\log t}$

Given *H*, define c(H) by $e(G) \ge c(H)|G|$ implies $H \prec G$ Let *H* have *t* verts and ave degree *d*. Clearly $c(H) \le c(t)$.

Incomplete minors

OK it's known that $c(t) = (0.319 + o(1)) t \sqrt{\log t}$ Given *H*, define c(H) by $e(G) \ge c(H)|G|$ implies $H \prec G$ Let *H* have *t* verts and ave degree *d*. Clearly $c(H) \le c(t)$.

Define $\gamma(H) = \min_{w} \frac{1}{t} \sum_{u \in H} w(u)$, where $w : V(H) \to \mathbf{R}^+$ and

$$\sum_{uv\in E(H)}e^{-w(u)w(v)}\leq t$$

Note $\gamma(H) \leq \sqrt{\log d}$

If $d \ge t^{\epsilon}$ then $c(t) = (0.319 + o(1)) t \gamma(H)$ (Myers+T 05)

Incomplete minors

OK it's known that $c(t) = (0.319 + o(1)) t \sqrt{\log t}$ Given *H*, define c(H) by $e(G) \ge c(H)|G|$ implies $H \prec G$ Let *H* have *t* verts and ave degree *d*. Clearly $c(H) \le c(t)$.

Define $\gamma(H) = \min_{w} \frac{1}{t} \sum_{u \in H} w(u)$, where $w : V(H) \to \mathbf{R}^+$ and

$$\sum_{uv\in E(H)}e^{-w(u)w(v)}\leq t$$

Note $\gamma(H) \leq \sqrt{\log d}$

If $d \ge t^{\epsilon}$ then $c(t) = (0.319 + o(1)) t \gamma(H)$ (Myers+T 05) If $d \ge t^{\epsilon}$ then $\gamma(H) \approx \sqrt{\log d}$ for almost all HIf $d \ge t^{\epsilon}$ then $\gamma(H) \approx \sqrt{\log d}$ all regular H $\gamma(K_{\beta t,(1-\beta)t}) \sim 2\sqrt{\beta(1-\beta)\log t}$

Sparse minors

If $d \ge t^{\epsilon}$ then $c(H) \le (0.319 + o(1)) t \sqrt{\log d}$ (Myers+T 05) What if d smaller, say $d = \log t$, eg if H = hypercube?

Sparse minors

If $d \ge t^{\epsilon}$ then $c(H) \le (0.319 + o(1)) t \sqrt{\log d}$ (Myers+T 05) What if d smaller, say $d = \log t$, eg if H = hypercube?

 $\Pr{H \prec G(n, p)} \le \text{number of blobbings} \times \Pr{\text{blobbing is ok}}$ $d \text{ small} \Longrightarrow \Pr{\text{blobbing is ok}} \text{ is large} \Longrightarrow \text{first term dominates}$ $\ln \text{fact}$ $d \le \log t \Longrightarrow G(t, 1/2) \text{ contains a spanning } H$ (Alon+Füredi 92)

Sparse examples

$c(K_{2,t}) = \frac{t+1}{2}$	Myers 03 large <i>t</i> Chudnovsky+Reed+Seymour 11, all <i>t</i>
$c(K_{s,t}) = (\frac{1}{2} + o(1))t$	Kühn+Osthus 05, large <i>t</i>
$c(K_{s,t}) = \frac{t+3s}{2} + O(\sqrt{s})$	Kostochka+Prince 07, large t
$c(\mathcal{K}_{s,t}) \leq rac{t+6s\log s}{2}$ true for $s \leq ct/\log t$ false for $s > Ct\log t$	Kostochka+Prince 10

c(hypercube) = O(t) (Hendrey+Norin+Wood 19+)

Get on with it If $d \ge t^{\epsilon}$ then $c(H) \le (0.319 + o(1)) t \sqrt{\log d}$ (Myers+T 05)

For all H, $c(H) \leq 3.895 t \sqrt{\log d}$ (Reed+Wood 15)

Get on with it

If $d \ge t^{\epsilon}$ then $c(H) \le (0.319 + o(1)) t \sqrt{\log d}$ (Myers+T 05)

For all H, $c(H) \leq 3.895 t \sqrt{\log d}$ (Reed+Wood 15)

Theorem (Wales+T 20+)

Given $\epsilon > 0$ there exists d_0 such that, for all $d \ge d_0$: all graphs H of order t and average degree $d > d_0$ satisfy

 $c(H) \leq (0.319 + \epsilon) t \sqrt{\log d}$

Theorem (Norin+Reed+T+Wood 20)

Given $\epsilon > 0$ there exists d_0 such that, for all $d \ge d_0$: for all $t \ge d$, almost all graphs H of order t and average degree d satisfy

$$c(H) \ge (0.319 - \epsilon) t \sqrt{\log d}$$

The lower bound

G is a *blowup* of a *tiny* random graph (c.f. Fox 11)

Take $G_0 = G(d, 0.715...)$

Form *G* by blowing up vertices of G_0 so that *G* has average degree $0.319t\sqrt{\log d}$

Show $H \not\prec G$ for almost all $H \quad \langle insert \ maths \ here \rangle$

The lower bound

G is a *blowup* of a *tiny* random graph (c.f. Fox 11)

Take $G_0 = G(d, 0.715...)$

Form *G* by blowing up vertices of G_0 so that *G* has average degree $0.319t\sqrt{\log d}$

Show $H \not\prec G$ for almost all $H \quad \langle insert \ maths \ here \rangle$

Is this a contradiction in maths?

le G is extremal so it should be pseudo-random

The upper bound

Lemma (Wales+T)

Given $\epsilon > 0$ there exists d_0 such that, for all $d \ge d_0$: if G is a graph of density at least $p + \epsilon$, with $\kappa(G) \ge \epsilon |G|$ and $|G| \ge t \sqrt{\log_{1/(1-p)} d}$, then $G \succ H$ for all H order t and ave deg d.

The upper bound

Lemma (Wales+T)

Given $\epsilon > 0$ there exists d_0 such that, for all $d \ge d_0$: if G is a graph of density at least $p + \epsilon$, with $\kappa(G) \ge \epsilon |G|$ and $|G| \ge t \sqrt{\log_{1/(1-p)} d}$, then $G \succ H$ for all H order t and ave deg d.

Proof.

a) "Degree random" partition G: t parts W_i , $|W_i| = \ell = |G|/t$

Thanks for your attention