The extremal function for sparse minors

Andrew Thomason

Erfurt (sort of)
28th July 2020

Long ago ...

Everything is a graph - no loops or multiple edges
H is a minor of G written $H \prec G$ if H can be obtained from G by a sequence of deletions and edge-contractions

Mader (60s) asked: how many edges in G guarantee $K_{t} \prec G$? Mader: $\exists c(t)$ such that $e(G) \geq c(t)|G|$ implies $K_{t} \prec G$ $c(t) \leq 2^{t-3}$ (Mader 67), $\quad c(t) \leq 8 t \log _{2} t$ (Mader 68)
$G=K_{t-2}+\bar{K}_{n-t+2}$ shows $c(t) \geq t-2$
$c(3)=1 \quad c(4)=2 \quad c(5)=3 \quad c(6)=4 \quad c(7)=5 \ldots($ Mader 68)
$c(t) \geq c t \sqrt{\log t}$ (Bollobás+Catlin+Erdős 80)

Why $\sqrt{\log }$?

Let $G=G(n, p)$ be random. Is $K_{s} \prec G$? Let $\ell=n / s$.

$\operatorname{Pr}\{$ two blobs have no edge between $\}=(1-p)^{\ell^{2}}$

Why $\sqrt{\log }$?

Let $G=G(n, p)$ be random. Is $K_{s} \prec G$? Let $\ell=n / s$.

$\operatorname{Pr}\{$ two blobs have no edge between $\}=(1-p)^{\ell^{2}}$
If we put $\ell=\sqrt{(1-\epsilon) \log s / \log (1-p)}$ this is $s^{-1+\epsilon}$ so

$$
\begin{aligned}
\operatorname{Pr}\left\{K_{s} \prec G\right\} & \leq \text { number of blobbings } \times \operatorname{Pr}\{\text { blobbing is ok }\} \\
& \leq s^{n} \times\left(1-s^{-1+\epsilon}\right)\binom{s}{2} \\
& \leq \exp \left\{s \ell \log s-s^{-1+\epsilon}\binom{s}{2}\right\}=o(1)
\end{aligned}
$$

The value of $c(t)$

$c(t) \geq 0.319 t \sqrt{\log t} \quad$ (Bollobás+Catlin+Erdős 80)
where $0.319 \ldots=\max _{p>0} \frac{p / 2}{\sqrt{\log 1 /(1-p)}} \quad$ (at $p=0.715 \ldots$)

The value of $c(t)$

$c(t) \geq 0.319 t \sqrt{\log t} \quad$ (Bollobás+Catlin+Erdős 80)
where $0.319 \ldots=\max _{p>0} \frac{p / 2}{\sqrt{\log 1 /(1-p)}} \quad$ (at $p=0.715 \ldots$)
$c(t)=\Theta(t \sqrt{\log t}) \quad$ (Kostochka 82, T 84)
$c(t)=(0.319+o(1)) t \sqrt{\log t} \quad(\mathrm{~T} 01)$
Extremal graphs are (more or less) disjoint unions of random-like graphs of the optimal size+density (Myers 02)

Incomplete minors

OK it's known that $c(t)=(0.319+o(1)) t \sqrt{\log t}$
Given H, define $c(H)$ by $\quad e(G) \geq c(H)|G|$ implies $H \prec G$ Let H have t verts and ave degree d. Clearly $c(H) \leq c(t)$.

Incomplete minors

OK it's known that $c(t)=(0.319+o(1)) t \sqrt{\log t}$
Given H, define $c(H)$ by $\quad e(G) \geq c(H)|G|$ implies $H \prec G$ Let H have t verts and ave degree d. Clearly $c(H) \leq c(t)$.

Define $\gamma(H)=\min _{w} \frac{1}{t} \sum_{u \in H} w(u)$, where $w: V(H) \rightarrow \mathbf{R}^{+}$and

$$
\sum_{u v \in E(H)} e^{-w(u) w(v)} \leq t
$$

Note $\gamma(H) \leq \sqrt{\log d}$
If $\quad d \geq t^{\epsilon}$ then $c(t)=(0.319+o(1)) t \gamma(H) \quad$ (Myers+T 05)

Incomplete minors

OK it's known that $c(t)=(0.319+o(1)) t \sqrt{\log t}$
Given H, define $c(H)$ by $\quad e(G) \geq c(H)|G|$ implies $H \prec G$ Let H have t verts and ave degree d. Clearly $c(H) \leq c(t)$.

Define $\gamma(H)=\min _{w} \frac{1}{t} \sum_{u \in H} w(u)$, where $w: V(H) \rightarrow \mathbf{R}^{+}$and

$$
\sum_{u v \in E(H)} e^{-w(u) w(v)} \leq t
$$

Note $\gamma(H) \leq \sqrt{\log d}$
If $\quad d \geq t^{\epsilon}$ then $c(t)=(0.319+o(1)) t \gamma(H) \quad$ (Myers+T 05)
If $d \geq t^{\epsilon} \quad$ then $\gamma(H) \approx \sqrt{\log d}$ for almost all H
If $d \geq t^{\epsilon} \quad$ then $\gamma(H) \approx \sqrt{\log d}$ all regular H
$\gamma\left(K_{\beta t,(1-\beta) t}\right) \sim 2 \sqrt{\beta(1-\beta) \log t}$

Sparse minors

If $d \geq t^{\epsilon}$ then $c(H) \leq(0.319+o(1)) t \sqrt{\log d} \quad$ (Myers+T 05)
What if d smaller, say $d=\log t$, eg if $H=$ hypercube?

Sparse minors

If $d \geq t^{\epsilon}$ then $c(H) \leq(0.319+o(1)) t \sqrt{\log d} \quad$ (Myers+T 05)
What if d smaller, say $d=\log t$, eg if $H=$ hypercube?
$\operatorname{Pr}\{H \prec G(n, p)\} \leq$ number of blobbings $\times \operatorname{Pr}\{$ blobbing is ok $\}$
d small $\Longrightarrow \operatorname{Pr}\{$ blobbing is ok $\}$ is large \Longrightarrow first term dominates
In fact
$d \leq \log t \Longrightarrow G(t, 1 / 2)$ contains a spanning $H \quad$ (Alon+Füredi 92)

Sparse examples

$c\left(K_{2, t}\right)=\frac{t+1}{2}$
$c\left(K_{s, t}\right)=\left(\frac{1}{2}+o(1)\right) t$
$c\left(K_{s, t}\right)=\frac{t+3 s}{2}+O(\sqrt{s})$
$c\left(K_{s, t}\right) \leq \frac{t+6 s \log s}{2}$ true for $s \leq c t / \log t$ false for $s>C t \log t$
$c($ hypercube $)=O(t) \quad($ Hendrey + Norin + Wood 19+)

Myers 03 large t
Chudnovsky+Reed+Seymour 11, all t

Kühn+Osthus 05, large t
Kostochka+Prince 07, large t

Kostochka+Prince 10

Get on with it

If $d \geq t^{\epsilon}$ then $c(H) \leq(0.319+o(1)) t \sqrt{\log d} \quad$ (Myers+T 05)
For all $H, c(H) \leq 3.895 t \sqrt{\log d} \quad($ Reed + Wood 15)

Get on with it

If $d \geq t^{\epsilon}$ then $c(H) \leq(0.319+o(1)) t \sqrt{\log d} \quad$ (Myers+T 05)
For all $H, c(H) \leq 3.895 t \sqrt{\log d} \quad$ (Reed+Wood 15)

Theorem (Wales+T 20+)
Given $\epsilon>0$ there exists d_{0} such that, for all $d \geq d_{0}$: all graphs H of order t and average degree $d>d_{0}$ satisfy

$$
c(H) \leq(0.319+\epsilon) t \sqrt{\log d}
$$

Theorem (Norin+Reed+T+Wood 20)
Given $\epsilon>0$ there exists d_{0} such that, for all $d \geq d_{0}$:
for all $t \geq d$, almost all graphs H of order t and average degree d satisfy

$$
c(H) \geq(0.319-\epsilon) t \sqrt{\log d}
$$

The lower bound

G is a blowup of a tiny random graph (c.f. Fox 11)

Take $G_{0}=G(d, 0.715 \ldots)$
Form G by blowing up vertices of G_{0} so that G has average degree $0.319 t \sqrt{\log d}$

Show $H \nprec G$ for almost all $H \quad$ <insert maths here〉

The lower bound

G is a blowup of a tiny random graph
(c.f. Fox 11)

Take $G_{0}=G(d, 0.715 \ldots)$
Form G by blowing up vertices of G_{0}
so that G has average degree $0.319 t \sqrt{\log d}$
Show $H \nprec G$ for almost all $H \quad$ <insert maths here〉

Is this a contradiction in maths?
le G is extremal so it should be pseudo-random

The upper bound

Lemma (Wales+T)

Given $\epsilon>0$ there exists d_{0} such that, for all $d \geq d_{0}$: if G is a graph of density at least $p+\epsilon$, with $\kappa(G) \geq \epsilon|G|$ and $|G| \geq t \sqrt{\log _{1 /(1-p)} d}$, then $G \succ H$ for all H order t and ave deg d.

The upper bound

Lemma (Wales+T)

Given $\epsilon>0$ there exists d_{0} such that, for all $d \geq d_{0}$: if G is a graph of density at least $p+\epsilon$, with $\kappa(G) \geq \epsilon|G|$ and $|G| \geq t \sqrt{\log _{1 /(1-p)} d}$, then $G \succ H$ for all H order t and ave deg d.

Proof.
a) "Degree random" partition G: t parts $W_{i},\left|W_{i}\right|=\ell=|G| / t$

Forming parts size $\mathrm{l}=5 \quad$ Part $\mathrm{W}_{1} \quad$ Part W_{2}
b) Randomly map $V(H)$ to $\left\{W_{1}, \ldots, W_{t}\right\}$.

Thanks for your attention

